Nuprl Lemma : cubical-type-equal3

[X:j⊢]. ∀[A,B:{X ⊢ _}].
  (A B ∈ {X ⊢ _}) supposing 
     ((∀I:fset(ℕ). ∀[rho:X(I)]. ∀[J:fset(ℕ)]. ∀[f:J ⟶ I]. ∀[u:A(rho)].  ((u rho f) (u rho f) ∈ A(f(rho)))) and 
     (∀I:fset(ℕ). ∀[rho:X(I)]. (A(rho) B(rho) ∈ Type)))


Proof




Definitions occuring in Statement :  cubical-type-ap-morph: (u f) cubical-type-at: A(a) cubical-type: {X ⊢ _} cube-set-restriction: f(s) I_cube: A(I) cubical_set: CubicalSet names-hom: I ⟶ J fset: fset(T) nat: uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T cubical_set: CubicalSet cube-cat: CubeCat all: x:A. B[x] I_cube: A(I) I_set: A(I) cubical-type-at: A(a) presheaf-type-at: A(a) cube-set-restriction: f(s) psc-restriction: f(s) cubical-type-ap-morph: (u f) presheaf-type-ap-morph: (u f)
Lemmas referenced :  presheaf-type-equal3 cube-cat_wf cubical-type-sq-presheaf-type cat_ob_pair_lemma cat_arrow_triple_lemma
Rules used in proof :  cut introduction extract_by_obid sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isectElimination thin hypothesis sqequalRule Error :memTop,  dependent_functionElimination

Latex:
\mforall{}[X:j\mvdash{}].  \mforall{}[A,B:\{X  \mvdash{}  \_\}].
    (A  =  B)  supposing 
          ((\mforall{}I:fset(\mBbbN{})
                  \mforall{}[rho:X(I)].  \mforall{}[J:fset(\mBbbN{})].  \mforall{}[f:J  {}\mrightarrow{}  I].  \mforall{}[u:A(rho)].    ((u  rho  f)  =  (u  rho  f)))  and 
          (\mforall{}I:fset(\mBbbN{}).  \mforall{}[rho:X(I)].  (A(rho)  =  B(rho))))



Date html generated: 2020_05_20-PM-01_48_51
Last ObjectModification: 2020_04_03-PM-08_26_27

Theory : cubical!type!theory


Home Index