Nuprl Lemma : presheaf-type-equal3

[C:SmallCategory]. ∀[X:ps_context{j:l}(C)]. ∀[A,B:{X ⊢ _}].
  (A B ∈ {X ⊢ _}) supposing 
     ((∀I:cat-ob(C)
         ∀[rho:X(I)]. ∀[J:cat-ob(C)]. ∀[f:cat-arrow(C) I]. ∀[u:A(rho)].  ((u rho f) (u rho f) ∈ A(f(rho)))) and 
     (∀I:cat-ob(C). ∀[rho:X(I)]. (A(rho) B(rho) ∈ Type)))


Proof




Definitions occuring in Statement :  presheaf-type-ap-morph: (u f) presheaf-type-at: A(a) presheaf-type: {X ⊢ _} psc-restriction: f(s) I_set: A(I) ps_context: __⊢ uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] apply: a universe: Type equal: t ∈ T cat-arrow: cat-arrow(C) cat-ob: cat-ob(C) small-category: SmallCategory
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a all: x:A. B[x] subtype_rel: A ⊆B presheaf-type: {X ⊢ _} and: P ∧ Q guard: {T} prop:
Lemmas referenced :  presheaf-type-equal2 cat-ob_wf I_set_wf istype-universe presheaf-type-at_wf presheaf-type_wf ps_context_wf small-category-cumulativity-2 small-category_wf presheaf_type_at_pair_lemma presheaf_type_ap_morph_pair_lemma cat-arrow_wf psc-restriction_wf ps_context_cumulativity2 equal_wf presheaf-type-ap-morph_wf subtype_rel-equal
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality sqequalRule functionIsType universeIsType isectIsType equalityIstype instantiate universeEquality inhabitedIsType applyEquality independent_isectElimination setElimination rename productElimination dependent_pairEquality_alt functionExtensionality dependent_functionElimination Error :memTop,  because_Cache equalityTransitivity equalitySymmetry lambdaEquality_alt hyp_replacement

Latex:
\mforall{}[C:SmallCategory].  \mforall{}[X:ps\_context\{j:l\}(C)].  \mforall{}[A,B:\{X  \mvdash{}  \_\}].
    (A  =  B)  supposing 
          ((\mforall{}I:cat-ob(C)
                  \mforall{}[rho:X(I)].  \mforall{}[J:cat-ob(C)].  \mforall{}[f:cat-arrow(C)  J  I].  \mforall{}[u:A(rho)].
                      ((u  rho  f)  =  (u  rho  f)))  and 
          (\mforall{}I:cat-ob(C).  \mforall{}[rho:X(I)].  (A(rho)  =  B(rho))))



Date html generated: 2020_05_20-PM-01_26_09
Last ObjectModification: 2020_04_01-PM-00_01_26

Theory : presheaf!models!of!type!theory


Home Index