Nuprl Lemma : discrete-fun-at-app
∀[f,a,alpha,I:Top].  (app(f; discr(a))(alpha) ~ discrete-fun(f)(alpha) a)
Proof
Definitions occuring in Statement : 
discrete-fun: discrete-fun(f)
, 
discrete-cubical-term: discr(t)
, 
cubical-app: app(w; u)
, 
cubical-term-at: u(a)
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
apply: f a
, 
sqequal: s ~ t
Definitions unfolded in proof : 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
cubical-app: app(w; u)
, 
discrete-cubical-term: discr(t)
, 
cubical-term-at: u(a)
, 
discrete-fun: discrete-fun(f)
Lemmas referenced : 
top_wf
Rules used in proof : 
because_Cache, 
hypothesisEquality, 
thin, 
isectElimination, 
isect_memberEquality, 
sqequalHypSubstitution, 
hypothesis, 
extract_by_obid, 
sqequalAxiom, 
cut, 
introduction, 
isect_memberFormation, 
computationStep, 
sqequalTransitivity, 
sqequalReflexivity, 
sqequalRule, 
sqequalSubstitution
Latex:
\mforall{}[f,a,alpha,I:Top].    (app(f;  discr(a))(alpha)  \msim{}  discrete-fun(f)(alpha)  a)
Date html generated:
2017_02_21-AM-10_43_16
Last ObjectModification:
2017_02_10-PM-11_26_41
Theory : cubical!type!theory
Home
Index