Step
*
1
1
of Lemma
discrete-function-injection
1. A : Type
2. B : A ⟶ Type
3. X : CubicalSet{j}
4. f : {X ⊢ _:Πdiscr(A) discrete-family(A;a.B[a])}
5. g : {X ⊢ _:Πdiscr(A) discrete-family(A;a.B[a])}
6. discrete-function(f) = discrete-function(g) ∈ {X ⊢ _:discr(a:A ⟶ B[a])}
7. I : fset(ℕ)
8. a : X(I)
9. f(a) = f(a) ∈ (J:fset(ℕ) ⟶ f:J ⟶ I ⟶ u:discr(A)(f(a)) ⟶ discrete-family(A;a.B[a])((f(a);u)))
10. ∀J,K:fset(ℕ). ∀f@0:J ⟶ I. ∀g:K ⟶ J. ∀u:discr(A)(f@0(a)).
((f(a) J f@0 u (f@0(a);u) g) = (f(a) K f@0 ⋅ g (u f@0(a) g)) ∈ discrete-family(A;a.B[a])(g((f@0(a);u))))
11. J : fset(ℕ)
12. h : J ⟶ I
13. u : discr(A)(h(a))
⊢ (f(a) J h u) = (g(a) J h u) ∈ discrete-family(A;a.B[a])((h(a);u))
BY
{ (RepUR ``discrete-family cc-adjoin-cube`` 0 THEN RepUR ``discrete-cubical-type`` -1) }
1
1. A : Type
2. B : A ⟶ Type
3. X : CubicalSet{j}
4. f : {X ⊢ _:Πdiscr(A) discrete-family(A;a.B[a])}
5. g : {X ⊢ _:Πdiscr(A) discrete-family(A;a.B[a])}
6. discrete-function(f) = discrete-function(g) ∈ {X ⊢ _:discr(a:A ⟶ B[a])}
7. I : fset(ℕ)
8. a : X(I)
9. f(a) = f(a) ∈ (J:fset(ℕ) ⟶ f:J ⟶ I ⟶ u:discr(A)(f(a)) ⟶ discrete-family(A;a.B[a])((f(a);u)))
10. ∀J,K:fset(ℕ). ∀f@0:J ⟶ I. ∀g:K ⟶ J. ∀u:discr(A)(f@0(a)).
((f(a) J f@0 u (f@0(a);u) g) = (f(a) K f@0 ⋅ g (u f@0(a) g)) ∈ discrete-family(A;a.B[a])(g((f@0(a);u))))
11. J : fset(ℕ)
12. h : J ⟶ I
13. u : A
⊢ (f(a) J h u) = (g(a) J h u) ∈ B[u]
Latex:
Latex:
1. A : Type
2. B : A {}\mrightarrow{} Type
3. X : CubicalSet\{j\}
4. f : \{X \mvdash{} \_:\mPi{}discr(A) discrete-family(A;a.B[a])\}
5. g : \{X \mvdash{} \_:\mPi{}discr(A) discrete-family(A;a.B[a])\}
6. discrete-function(f) = discrete-function(g)
7. I : fset(\mBbbN{})
8. a : X(I)
9. f(a) = f(a)
10. \mforall{}J,K:fset(\mBbbN{}). \mforall{}f@0:J {}\mrightarrow{} I. \mforall{}g:K {}\mrightarrow{} J. \mforall{}u:discr(A)(f@0(a)).
((f(a) J f@0 u (f@0(a);u) g) = (f(a) K f@0 \mcdot{} g (u f@0(a) g)))
11. J : fset(\mBbbN{})
12. h : J {}\mrightarrow{} I
13. u : discr(A)(h(a))
\mvdash{} (f(a) J h u) = (g(a) J h u)
By
Latex:
(RepUR ``discrete-family cc-adjoin-cube`` 0 THEN RepUR ``discrete-cubical-type`` -1)
Home
Index