Nuprl Lemma : discrete-function-injection

[A:Type]. ∀[B:A ⟶ Type]. ∀[X:j⊢].
  ∀f,g:{X ⊢ _:Πdiscr(A) discrete-family(A;a.B[a])}.
    g ∈ {X ⊢ _:Πdiscr(A) discrete-family(A;a.B[a])} 
    supposing discrete-function(f) discrete-function(g) ∈ {X ⊢ _:discr(a:A ⟶ B[a])}


Proof




Definitions occuring in Statement :  discrete-function: discrete-function(f) discrete-family: discrete-family(A;a.B[a]) discrete-cubical-type: discr(T) cubical-pi: ΠB cubical-term: {X ⊢ _:A} cubical_set: CubicalSet uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s] all: x:A. B[x] function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] uimplies: supposing a cubical-term-at: u(a) so_lambda: λ2x.t[x] so_apply: x[s] cubical-pi: ΠB cubical-pi-family: cubical-pi-family(X;A;B;I;a) squash: T subtype_rel: A ⊆B cubical-type-at: A(a) pi1: fst(t) discrete-cubical-type: discr(T) prop: guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q true: True respects-equality: respects-equality(S;T) cc-adjoin-cube: (v;u) discrete-family: discrete-family(A;a.B[a]) pi2: snd(t) discrete-function: discrete-function(f) cube-context-adjoin: X.A
Lemmas referenced :  cubical-term-at_wf cubical-pi_wf discrete-cubical-type_wf discrete-family_wf I_cube_wf fset_wf nat_wf cubical-term-equal cubical-term_wf discrete-function_wf cubical_set_wf istype-universe cubical_type_at_pair_lemma cubical-type-at_wf cube-set-restriction_wf names-hom_wf istype-cubical-type-at cube-context-adjoin_wf cc-adjoin-cube_wf cubical-type-ap-morph_wf nh-comp_wf subtype_rel-equal subtype-respects-equality cc-adjoin-cube-restriction equal_wf squash_wf true_wf cube-set-restriction-comp subtype_rel_self iff_weakening_equal nh-id_wf cube_set_restriction_pair_lemma cubical_type_ap_morph_pair_lemma nh-id-right
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut lambdaFormation_alt functionExtensionality extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis sqequalRule lambdaEquality_alt applyEquality universeIsType equalityTransitivity equalitySymmetry independent_isectElimination equalityIstype instantiate cumulativity functionEquality inhabitedIsType dependent_functionElimination isect_memberEquality_alt axiomEquality isectIsTypeImplies functionIsTypeImplies functionIsType universeEquality Error :memTop,  applyLambdaEquality setElimination rename imageMemberEquality baseClosed imageElimination dependent_set_memberEquality_alt because_Cache productElimination independent_functionElimination natural_numberEquality hyp_replacement

Latex:
\mforall{}[A:Type].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[X:j\mvdash{}].
    \mforall{}f,g:\{X  \mvdash{}  \_:\mPi{}discr(A)  discrete-family(A;a.B[a])\}.
        f  =  g  supposing  discrete-function(f)  =  discrete-function(g)



Date html generated: 2020_05_20-PM-03_39_32
Last ObjectModification: 2020_04_07-PM-04_29_43

Theory : cubical!type!theory


Home Index