Nuprl Lemma : discrete-function_wf
∀[A:Type]. ∀[B:A ⟶ Type]. ∀[X:j⊢]. ∀[f:{X ⊢ _:Πdiscr(A) discrete-family(A;a.B[a])}].
(discrete-function(f) ∈ {X ⊢ _:discr(a:A ⟶ B[a])})
Proof
Definitions occuring in Statement :
discrete-function: discrete-function(f)
,
discrete-family: discrete-family(A;a.B[a])
,
discrete-cubical-type: discr(T)
,
cubical-pi: ΠA B
,
cubical-term: {X ⊢ _:A}
,
cubical_set: CubicalSet
,
uall: ∀[x:A]. B[x]
,
so_apply: x[s]
,
member: t ∈ T
,
function: x:A ⟶ B[x]
,
universe: Type
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
discrete-function: discrete-function(f)
,
cubical-term: {X ⊢ _:A}
,
discrete-cubical-type: discr(T)
,
all: ∀x:A. B[x]
,
so_apply: x[s]
,
so_lambda: λ2x.t[x]
,
cubical-pi: ΠA B
,
cubical-pi-family: cubical-pi-family(X;A;B;I;a)
,
subtype_rel: A ⊆r B
,
cc-adjoin-cube: (v;u)
,
discrete-family: discrete-family(A;a.B[a])
,
pi2: snd(t)
,
squash: ↓T
,
prop: ℙ
,
true: True
,
implies: P
⇒ Q
,
uimplies: b supposing a
,
cubical-type-at: A(a)
,
pi1: fst(t)
,
cube-context-adjoin: X.A
,
guard: {T}
,
iff: P
⇐⇒ Q
,
and: P ∧ Q
,
rev_implies: P
⇐ Q
Lemmas referenced :
cubical_type_at_pair_lemma,
cubical_type_ap_morph_pair_lemma,
fset_wf,
nat_wf,
names-hom_wf,
I_cube_wf,
istype-cubical-type-at,
cube-set-restriction_wf,
discrete-cubical-type_wf,
cubical-type-ap-morph_wf,
cubical-term_wf,
cubical-pi_wf,
discrete-family_wf,
cubical_set_wf,
istype-universe,
nh-id_wf,
equal_wf,
squash_wf,
true_wf,
subtype_rel-equal,
cubical-type-at_wf,
cube_set_restriction_pair_lemma,
nh-id-left,
nh-comp_wf,
subtype_rel_self,
iff_weakening_equal,
nh-id-right
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation_alt,
introduction,
cut,
dependent_set_memberEquality_alt,
sqequalRule,
extract_by_obid,
sqequalHypSubstitution,
dependent_functionElimination,
thin,
Error :memTop,
hypothesis,
functionIsType,
universeIsType,
isectElimination,
because_Cache,
hypothesisEquality,
equalityIstype,
functionEquality,
applyEquality,
axiomEquality,
equalityTransitivity,
equalitySymmetry,
instantiate,
cumulativity,
lambdaEquality_alt,
isect_memberEquality_alt,
isectIsTypeImplies,
inhabitedIsType,
universeEquality,
setElimination,
rename,
functionExtensionality,
hyp_replacement,
lambdaFormation_alt,
applyLambdaEquality,
imageMemberEquality,
baseClosed,
imageElimination,
natural_numberEquality,
independent_functionElimination,
independent_isectElimination,
productElimination
Latex:
\mforall{}[A:Type]. \mforall{}[B:A {}\mrightarrow{} Type]. \mforall{}[X:j\mvdash{}]. \mforall{}[f:\{X \mvdash{} \_:\mPi{}discr(A) discrete-family(A;a.B[a])\}].
(discrete-function(f) \mmember{} \{X \mvdash{} \_:discr(a:A {}\mrightarrow{} B[a])\})
Date html generated:
2020_05_20-PM-03_38_52
Last ObjectModification:
2020_04_07-PM-04_29_33
Theory : cubical!type!theory
Home
Index