Nuprl Lemma : discrete-family_wf

[A:Type]. ∀[B:A ⟶ Type]. ∀[X:j⊢].  X.discr(A) ⊢ discrete-family(A;a.B[a])


Proof




Definitions occuring in Statement :  discrete-family: discrete-family(A;a.B[a]) discrete-cubical-type: discr(T) cube-context-adjoin: X.A cubical-type: {X ⊢ _} cubical_set: CubicalSet uall: [x:A]. B[x] so_apply: x[s] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T cubical-type: {X ⊢ _} discrete-family: discrete-family(A;a.B[a]) discrete-cubical-type: discr(T) cube-context-adjoin: X.A all: x:A. B[x] so_apply: x[s] pi2: snd(t) so_lambda: λ2x.t[x] and: P ∧ Q cand: c∧ B subtype_rel: A ⊆B uimplies: supposing a squash: T prop: true: True guard: {T} iff: ⇐⇒ Q rev_implies:  Q implies:  Q
Lemmas referenced :  I_cube_pair_redex_lemma cubical_type_at_pair_lemma cube_set_restriction_pair_lemma cubical_type_ap_morph_pair_lemma I_cube_wf fset_wf nat_wf istype-universe names-hom_wf cube-set-restriction_wf pi1_wf_top pi2_wf cube-context-adjoin_wf cubical_set_cumulativity-i-j discrete-cubical-type_wf nh-id_wf subtype_rel-equal equal_wf squash_wf true_wf cube-set-restriction-id subtype_rel_self iff_weakening_equal nh-comp_wf cube-set-restriction-comp cubical_set_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt dependent_set_memberEquality_alt sqequalRule cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin Error :memTop,  hypothesis dependent_pairEquality_alt lambdaEquality_alt applyEquality hypothesisEquality productElimination productIsType universeIsType isectElimination because_Cache functionIsType instantiate independent_pairEquality cumulativity lambdaFormation_alt independent_pairFormation equalityIstype independent_isectElimination imageElimination equalityTransitivity equalitySymmetry universeEquality natural_numberEquality imageMemberEquality baseClosed independent_functionElimination inhabitedIsType

Latex:
\mforall{}[A:Type].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[X:j\mvdash{}].    X.discr(A)  \mvdash{}  discrete-family(A;a.B[a])



Date html generated: 2020_05_20-PM-03_38_11
Last ObjectModification: 2020_04_06-PM-07_06_33

Theory : cubical!type!theory


Home Index