Step * 1 of Lemma discrete-pi-equiv

.....assertion..... 
1. Type
2. A ⟶ Type
3. CubicalSet{j}
⊢ discrete-function(q) ∈ {X.Πdiscr(A) discrete-family(A;a.B[a]) ⊢ _:(discr(a:A ⟶ B[a]))p}
BY
((InstLemma `cubical-pi-p` [X;Πdiscr(A) discrete-family(A;a.B[a]);discr(A);discrete-family(A;a.B[a])]⋅
 CollapseTHENA (Auto⋅))⋅ }

1
1. Type
2. A ⟶ Type
3. CubicalSet{j}
4. discr(A) discrete-family(A;a.B[a]))p
X.Πdiscr(A) discrete-family(A;a.B[a]) ⊢ Π(discr(A))p (discrete-family(A;a.B[a]))(p p;q)
∈ {X.Πdiscr(A) discrete-family(A;a.B[a]) ⊢ _}
⊢ discrete-function(q) ∈ {X.Πdiscr(A) discrete-family(A;a.B[a]) ⊢ _:(discr(a:A ⟶ B[a]))p}


Latex:


Latex:
.....assertion..... 
1.  A  :  Type
2.  B  :  A  {}\mrightarrow{}  Type
3.  X  :  CubicalSet\{j\}
\mvdash{}  discrete-function(q)  \mmember{}  \{X.\mPi{}discr(A)  discrete-family(A;a.B[a])  \mvdash{}  \_:(discr(a:A  {}\mrightarrow{}  B[a]))p\}


By


Latex:
((InstLemma  `cubical-pi-p`  [X;\mPi{}discr(A)  discrete-family(A;a.B[a]);discr(A);discrete-family(A;a.B[a])
]\mcdot{})    CollapseTHENA  (Auto\mcdot{}))\mcdot{}




Home Index