Nuprl Lemma : discrete-pi-equiv

A:Type. ∀B:A ⟶ Type. ∀X:j⊢.  {X ⊢ _:Equiv(Πdiscr(A) discrete-family(A;a.B[a]);discr(a:A ⟶ B[a]))}


Proof




Definitions occuring in Statement :  discrete-family: discrete-family(A;a.B[a]) cubical-equiv: Equiv(T;A) discrete-cubical-type: discr(T) cubical-pi: ΠB cubical-term: {X ⊢ _:A} cubical_set: CubicalSet so_apply: x[s] all: x:A. B[x] function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] so_lambda: λ2x.t[x] so_apply: x[s] discrete-family: discrete-family(A;a.B[a]) cc-snd: q cc-fst: p csm-comp: F csm-adjoin: (s;u) csm-ap-type: (AF)s compose: g csm-ap: (s)x pi2: snd(t) subtype_rel: A ⊆B uimplies: supposing a is-cubical-equiv: IsEquiv(T;A;w) squash: T prop: true: True discrete-cubical-type: discr(T) cubical-lam: cubical-lam(X;b) cubical-app: app(w; u) cube-context-adjoin: X.A discrete-function-inv: discrete-function-inv(X; b) discrete-function: discrete-function(f) cubical-lambda: b) cc-adjoin-cube: (v;u) cubical-term-at: u(a) csm-ap-term: (t)s pi1: fst(t) implies:  Q and: P ∧ Q iff: ⇐⇒ Q rev_implies:  Q guard: {T} cubical-pi: ΠB cubical-term: {X ⊢ _:A} fset: fset(T) quotient: x,y:A//B[x; y] I_cube: A(I) functor-ob: ob(F) cubical-type-at: A(a) names-hom: I ⟶ J cubical-type-ap-morph: (u f) cubical-type: {X ⊢ _} fiber-member: fiber-member(p) cubical-fun: (A ⟶ B) cubical-fun-family: cubical-fun-family(X; A; B; I; a) cubical-pi-family: cubical-pi-family(X;A;B;I;a) fiber-point: fiber-point(t;c)
Lemmas referenced :  cubical_set_wf istype-universe cubical-pi-p cubical-pi_wf discrete-cubical-type_wf discrete-family_wf csm-discrete-cubical-type discrete-function_wf cube-context-adjoin_wf cubical_set_cumulativity-i-j cubical-type-cumulativity2 cc-snd_wf cubical-term-eqcd equiv-witness_wf cubical-lam_wf cubical-lambda_wf contractible-type_wf cubical-fiber_wf csm-ap-type_wf cc-fst_wf csm-ap-term_wf cubical-fun_wf csm-cubical-fun contr-witness_wf fiber-point_wf discrete-function-inv_wf csm-discrete-pi path-type_wf squash_wf true_wf istype-cubical-term cubical-type_wf I_cube_wf fset_wf nat_wf cubical-term-equal cubical_type_at_pair_lemma cubical_type_ap_morph_pair_lemma cube_set_restriction_pair_lemma I_cube_pair_redex_lemma cubical-refl_wf csm-cubical-fiber equal-fiber-discrete csm-fiber-point equal_wf subtype_rel_self iff_weakening_equal csm-discrete-family csm-path-type cubical-app_wf_fun subset-cubical-term2 sub_cubical_set_self cubical-term_wf cube-context-adjoin-I_cube istype-cubical-type-at cube-set-restriction-id fiber-discrete-equal fiber-member_wf discrete-function-injection cubical-term-at_wf discrete-function-inv-property cubical-fst-pair
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut universeIsType thin instantiate introduction extract_by_obid hypothesis functionIsType hypothesisEquality inhabitedIsType sqequalHypSubstitution isectElimination universeEquality dependent_functionElimination sqequalRule lambdaEquality_alt applyEquality Error :memTop,  comment because_Cache equalityTransitivity equalitySymmetry independent_isectElimination hyp_replacement functionEquality cumulativity imageElimination natural_numberEquality imageMemberEquality baseClosed functionExtensionality productElimination equalityIstype independent_functionElimination dependent_set_memberEquality_alt independent_pairFormation productIsType applyLambdaEquality setElimination rename dependent_pairEquality_alt

Latex:
\mforall{}A:Type.  \mforall{}B:A  {}\mrightarrow{}  Type.  \mforall{}X:j\mvdash{}.    \{X  \mvdash{}  \_:Equiv(\mPi{}discr(A)  discrete-family(A;a.B[a]);discr(a:A  {}\mrightarrow{}  B[a]))\}



Date html generated: 2020_05_20-PM-03_40_20
Last ObjectModification: 2020_04_20-PM-07_21_07

Theory : cubical!type!theory


Home Index