Nuprl Lemma : discrete-pi-equiv
∀A:Type. ∀B:A ⟶ Type. ∀X:j⊢.  {X ⊢ _:Equiv(Πdiscr(A) discrete-family(A;a.B[a]);discr(a:A ⟶ B[a]))}
Proof
Definitions occuring in Statement : 
discrete-family: discrete-family(A;a.B[a])
, 
cubical-equiv: Equiv(T;A)
, 
discrete-cubical-type: discr(T)
, 
cubical-pi: ΠA B
, 
cubical-term: {X ⊢ _:A}
, 
cubical_set: CubicalSet
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
discrete-family: discrete-family(A;a.B[a])
, 
cc-snd: q
, 
cc-fst: p
, 
csm-comp: G o F
, 
csm-adjoin: (s;u)
, 
csm-ap-type: (AF)s
, 
compose: f o g
, 
csm-ap: (s)x
, 
pi2: snd(t)
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
is-cubical-equiv: IsEquiv(T;A;w)
, 
squash: ↓T
, 
prop: ℙ
, 
true: True
, 
discrete-cubical-type: discr(T)
, 
cubical-lam: cubical-lam(X;b)
, 
cubical-app: app(w; u)
, 
cube-context-adjoin: X.A
, 
discrete-function-inv: discrete-function-inv(X; b)
, 
discrete-function: discrete-function(f)
, 
cubical-lambda: (λb)
, 
cc-adjoin-cube: (v;u)
, 
cubical-term-at: u(a)
, 
csm-ap-term: (t)s
, 
pi1: fst(t)
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
guard: {T}
, 
cubical-pi: ΠA B
, 
cubical-term: {X ⊢ _:A}
, 
fset: fset(T)
, 
quotient: x,y:A//B[x; y]
, 
I_cube: A(I)
, 
functor-ob: ob(F)
, 
cubical-type-at: A(a)
, 
names-hom: I ⟶ J
, 
cubical-type-ap-morph: (u a f)
, 
cubical-type: {X ⊢ _}
, 
fiber-member: fiber-member(p)
, 
cubical-fun: (A ⟶ B)
, 
cubical-fun-family: cubical-fun-family(X; A; B; I; a)
, 
cubical-pi-family: cubical-pi-family(X;A;B;I;a)
, 
fiber-point: fiber-point(t;c)
Lemmas referenced : 
cubical_set_wf, 
istype-universe, 
cubical-pi-p, 
cubical-pi_wf, 
discrete-cubical-type_wf, 
discrete-family_wf, 
csm-discrete-cubical-type, 
discrete-function_wf, 
cube-context-adjoin_wf, 
cubical_set_cumulativity-i-j, 
cubical-type-cumulativity2, 
cc-snd_wf, 
cubical-term-eqcd, 
equiv-witness_wf, 
cubical-lam_wf, 
cubical-lambda_wf, 
contractible-type_wf, 
cubical-fiber_wf, 
csm-ap-type_wf, 
cc-fst_wf, 
csm-ap-term_wf, 
cubical-fun_wf, 
csm-cubical-fun, 
contr-witness_wf, 
fiber-point_wf, 
discrete-function-inv_wf, 
csm-discrete-pi, 
path-type_wf, 
squash_wf, 
true_wf, 
istype-cubical-term, 
cubical-type_wf, 
I_cube_wf, 
fset_wf, 
nat_wf, 
cubical-term-equal, 
cubical_type_at_pair_lemma, 
cubical_type_ap_morph_pair_lemma, 
cube_set_restriction_pair_lemma, 
I_cube_pair_redex_lemma, 
cubical-refl_wf, 
csm-cubical-fiber, 
equal-fiber-discrete, 
csm-fiber-point, 
equal_wf, 
subtype_rel_self, 
iff_weakening_equal, 
csm-discrete-family, 
csm-path-type, 
cubical-app_wf_fun, 
subset-cubical-term2, 
sub_cubical_set_self, 
cubical-term_wf, 
cube-context-adjoin-I_cube, 
istype-cubical-type-at, 
cube-set-restriction-id, 
fiber-discrete-equal, 
fiber-member_wf, 
discrete-function-injection, 
cubical-term-at_wf, 
discrete-function-inv-property, 
cubical-fst-pair
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
universeIsType, 
thin, 
instantiate, 
introduction, 
extract_by_obid, 
hypothesis, 
functionIsType, 
hypothesisEquality, 
inhabitedIsType, 
sqequalHypSubstitution, 
isectElimination, 
universeEquality, 
dependent_functionElimination, 
sqequalRule, 
lambdaEquality_alt, 
applyEquality, 
Error :memTop, 
comment, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
independent_isectElimination, 
hyp_replacement, 
functionEquality, 
cumulativity, 
imageElimination, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
functionExtensionality, 
productElimination, 
equalityIstype, 
independent_functionElimination, 
dependent_set_memberEquality_alt, 
independent_pairFormation, 
productIsType, 
applyLambdaEquality, 
setElimination, 
rename, 
dependent_pairEquality_alt
Latex:
\mforall{}A:Type.  \mforall{}B:A  {}\mrightarrow{}  Type.  \mforall{}X:j\mvdash{}.    \{X  \mvdash{}  \_:Equiv(\mPi{}discr(A)  discrete-family(A;a.B[a]);discr(a:A  {}\mrightarrow{}  B[a]))\}
Date html generated:
2020_05_20-PM-03_40_20
Last ObjectModification:
2020_04_20-PM-07_21_07
Theory : cubical!type!theory
Home
Index