Nuprl Lemma : fiber-member_wf

[X:j⊢]. ∀[T,A:{X ⊢ _}]. ∀[w:{X ⊢ _:(T ⟶ A)}]. ∀[a:{X ⊢ _:A}]. ∀[p:{X ⊢ _:Fiber(w;a)}].  (fiber-member(p) ∈ {X ⊢ _:T})


Proof




Definitions occuring in Statement :  fiber-member: fiber-member(p) cubical-fiber: Fiber(w;a) cubical-fun: (A ⟶ B) cubical-term: {X ⊢ _:A} cubical-type: {X ⊢ _} cubical_set: CubicalSet uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T cubical-fiber: Fiber(w;a) fiber-member: fiber-member(p) subtype_rel: A ⊆B all: x:A. B[x] and: P ∧ Q
Lemmas referenced :  cubical-fst_wf path-type_wf cube-context-adjoin_wf cubical_set_cumulativity-i-j cubical-type-cumulativity2 csm-ap-type_wf cc-fst_wf csm-ap-term_wf cubical-term_wf cubical-fiber_wf cubical-fun_wf cubical-type_wf cubical_set_wf cc-snd_wf csm-cubical-fun cubical-app_wf_fun
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut sqequalHypSubstitution sqequalRule introduction extract_by_obid isectElimination thin hypothesisEquality instantiate applyEquality hypothesis because_Cache equalityTransitivity equalitySymmetry universeIsType dependent_functionElimination dependent_set_memberEquality_alt independent_pairFormation productIsType equalityIstype inhabitedIsType applyLambdaEquality setElimination rename productElimination lambdaEquality_alt hyp_replacement

Latex:
\mforall{}[X:j\mvdash{}].  \mforall{}[T,A:\{X  \mvdash{}  \_\}].  \mforall{}[w:\{X  \mvdash{}  \_:(T  {}\mrightarrow{}  A)\}].  \mforall{}[a:\{X  \mvdash{}  \_:A\}].  \mforall{}[p:\{X  \mvdash{}  \_:Fiber(w;a)\}].
    (fiber-member(p)  \mmember{}  \{X  \mvdash{}  \_:T\})



Date html generated: 2020_05_20-PM-03_24_18
Last ObjectModification: 2020_04_07-PM-04_11_09

Theory : cubical!type!theory


Home Index