Nuprl Lemma : discrete-function-inv_wf

[A:Type]. ∀[B:A ⟶ Type]. ∀[X:j⊢]. ∀[b:{X ⊢ _:discr(a:A ⟶ B[a])}].
  (discrete-function-inv(X; b) ∈ {X ⊢ _:Πdiscr(A) discrete-family(A;a.B[a])})


Proof




Definitions occuring in Statement :  discrete-function-inv: discrete-function-inv(X; b) discrete-family: discrete-family(A;a.B[a]) discrete-cubical-type: discr(T) cubical-pi: ΠB cubical-term: {X ⊢ _:A} cubical_set: CubicalSet uall: [x:A]. B[x] so_apply: x[s] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T discrete-function-inv: discrete-function-inv(X; b) so_lambda: λ2x.t[x] so_apply: x[s] cubical-term: {X ⊢ _:A} discrete-cubical-type: discr(T) all: x:A. B[x] cc-snd: q cube-context-adjoin: X.A discrete-family: discrete-family(A;a.B[a]) cubical-term-at: u(a) pi2: snd(t) pi1: fst(t) guard: {T} subtype_rel: A ⊆B
Lemmas referenced :  cubical-lambda_wf discrete-cubical-type_wf discrete-family_wf cubical-term_wf cubical_set_wf istype-universe cubical_type_at_pair_lemma cubical_type_ap_morph_pair_lemma I_cube_pair_redex_lemma pi1_wf_top I_cube_wf pi2_wf fset_wf nat_wf cube_set_restriction_pair_lemma names-hom_wf cube-context-adjoin_wf cubical_set_cumulativity-i-j istype-cubical-type-at cube-set-restriction_wf cubical-type-ap-morph_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality because_Cache hypothesis lambdaEquality_alt applyEquality axiomEquality equalityTransitivity equalitySymmetry universeIsType instantiate cumulativity functionEquality isect_memberEquality_alt isectIsTypeImplies inhabitedIsType functionIsType universeEquality setElimination rename dependent_set_memberEquality_alt dependent_functionElimination Error :memTop,  productElimination independent_pairEquality productIsType lambdaFormation_alt equalityIstype

Latex:
\mforall{}[A:Type].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[X:j\mvdash{}].  \mforall{}[b:\{X  \mvdash{}  \_:discr(a:A  {}\mrightarrow{}  B[a])\}].
    (discrete-function-inv(X;  b)  \mmember{}  \{X  \mvdash{}  \_:\mPi{}discr(A)  discrete-family(A;a.B[a])\})



Date html generated: 2020_05_20-PM-03_39_04
Last ObjectModification: 2020_04_06-PM-07_07_53

Theory : cubical!type!theory


Home Index