Step * 2 1 of Lemma discrete-pi-equiv


1. Type
2. A ⟶ Type
3. CubicalSet{j}
4. discrete-function(q) ∈ {X.Πdiscr(A) discrete-family(A;a.B[a]) ⊢ _:(discr(a:A ⟶ B[a]))p}
⊢ discrete-function-inv(X.discr(a:A ⟶ B[a]); q) ∈ {X.discr(a:A ⟶ B[a]) ⊢ _:(Πdiscr(A) discrete-family(A;a.B[a]))p}
BY
((InstLemma `discrete-function-inv_wf` [A;B]⋅  CollapseTHENA (Auto⋅))⋅ }

1
1. Type
2. A ⟶ Type
3. CubicalSet{j}
4. discrete-function(q) ∈ {X.Πdiscr(A) discrete-family(A;a.B[a]) ⊢ _:(discr(a:A ⟶ B[a]))p}
5. ∀[X:j⊢]. ∀[b:{X ⊢ _:discr(a:A ⟶ B[a])}].
     (discrete-function-inv(X; b) ∈ {X ⊢ _:Πdiscr(A) discrete-family(A;a.B[a])})
⊢ discrete-function-inv(X.discr(a:A ⟶ B[a]); q) ∈ {X.discr(a:A ⟶ B[a]) ⊢ _:(Πdiscr(A) discrete-family(A;a.B[a]))p}


Latex:


Latex:

1.  A  :  Type
2.  B  :  A  {}\mrightarrow{}  Type
3.  X  :  CubicalSet\{j\}
4.  discrete-function(q)  \mmember{}  \{X.\mPi{}discr(A)  discrete-family(A;a.B[a])  \mvdash{}  \_:(discr(a:A  {}\mrightarrow{}  B[a]))p\}
\mvdash{}  discrete-function-inv(X.discr(a:A  {}\mrightarrow{}  B[a]);  q)
    \mmember{}  \{X.discr(a:A  {}\mrightarrow{}  B[a])  \mvdash{}  \_:(\mPi{}discr(A)  discrete-family(A;a.B[a]))p\}


By


Latex:
((InstLemma  `discrete-function-inv\_wf`  [A;B]\mcdot{})    CollapseTHENA  (Auto\mcdot{}))\mcdot{}




Home Index