Step * 1 2 of Lemma equal-paths-eta


1. CubicalSet{j}
2. {X ⊢ _}
3. {X ⊢ _:Path(A)}
4. {X ⊢ _:Path(A)}
5. path-eta(p) path-eta(q) ∈ {X.𝕀 ⊢ _:(A)p}
6. X ⊢ <>(path-eta(p)) X ⊢ <>(path-eta(q)) ∈ {X ⊢ _:Path(A)}
⊢ q ∈ {X ⊢ _:Path(A)}
BY
(InstLemma `cubical-fun-eta` [⌜X⌝;⌜𝕀⌝;⌜A⌝]⋅ THENA Auto) }

1
1. CubicalSet{j}
2. {X ⊢ _}
3. {X ⊢ _:Path(A)}
4. {X ⊢ _:Path(A)}
5. path-eta(p) path-eta(q) ∈ {X.𝕀 ⊢ _:(A)p}
6. X ⊢ <>(path-eta(p)) X ⊢ <>(path-eta(q)) ∈ {X ⊢ _:Path(A)}
7. ∀[w:{X ⊢ _:(𝕀 ⟶ A)}]. (cubical-lam(X;app((w)p; q)) w ∈ {X ⊢ _:(𝕀 ⟶ A)})
⊢ q ∈ {X ⊢ _:Path(A)}


Latex:


Latex:

1.  X  :  CubicalSet\{j\}
2.  A  :  \{X  \mvdash{}  \_\}
3.  p  :  \{X  \mvdash{}  \_:Path(A)\}
4.  q  :  \{X  \mvdash{}  \_:Path(A)\}
5.  path-eta(p)  =  path-eta(q)
6.  X  \mvdash{}  <>(path-eta(p))  =  X  \mvdash{}  <>(path-eta(q))
\mvdash{}  p  =  q


By


Latex:
(InstLemma  `cubical-fun-eta`  [\mkleeneopen{}X\mkleeneclose{};\mkleeneopen{}\mBbbI{}\mkleeneclose{};\mkleeneopen{}A\mkleeneclose{}]\mcdot{}  THENA  Auto)




Home Index