Nuprl Lemma : ext-eq-cs_wf
∀[X,Y:j⊢].  (X ≡ Y ∈ ℙ{[i | j']})
Proof
Definitions occuring in Statement : 
ext-eq-cs: X ≡ Y
, 
cubical_set: CubicalSet
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
cubical_set: CubicalSet
, 
ext-eq-cs: X ≡ Y
Lemmas referenced : 
ext-eq-psc_wf, 
cube-cat_wf
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isectElimination, 
thin, 
hypothesis, 
sqequalRule
Latex:
\mforall{}[X,Y:j\mvdash{}].    (X  \mequiv{}  Y  \mmember{}  \mBbbP{}\{[i  |  j']\})
Date html generated:
2020_05_20-PM-01_38_50
Last ObjectModification:
2020_04_03-PM-03_42_47
Theory : cubical!type!theory
Home
Index