Nuprl Lemma : ext-eq-cs_wf

[X,Y:j⊢].  (X ≡ Y ∈ ℙ{[i j']})


Proof




Definitions occuring in Statement :  ext-eq-cs: X ≡ Y cubical_set: CubicalSet uall: [x:A]. B[x] prop: member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T cubical_set: CubicalSet ext-eq-cs: X ≡ Y
Lemmas referenced :  ext-eq-psc_wf cube-cat_wf
Rules used in proof :  cut introduction extract_by_obid sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isectElimination thin hypothesis sqequalRule

Latex:
\mforall{}[X,Y:j\mvdash{}].    (X  \mequiv{}  Y  \mmember{}  \mBbbP{}\{[i  |  j']\})



Date html generated: 2020_05_20-PM-01_38_50
Last ObjectModification: 2020_04_03-PM-03_42_47

Theory : cubical!type!theory


Home Index