Nuprl Lemma : ext-eq-cs_wf
∀[X,Y:j⊢]. (X ≡ Y ∈ ℙ{[i | j']})
Proof
Definitions occuring in Statement :
ext-eq-cs: X ≡ Y
,
cubical_set: CubicalSet
,
uall: ∀[x:A]. B[x]
,
prop: ℙ
,
member: t ∈ T
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
cubical_set: CubicalSet
,
ext-eq-cs: X ≡ Y
Lemmas referenced :
ext-eq-psc_wf,
cube-cat_wf
Rules used in proof :
cut,
introduction,
extract_by_obid,
sqequalHypSubstitution,
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isectElimination,
thin,
hypothesis,
sqequalRule
Latex:
\mforall{}[X,Y:j\mvdash{}]. (X \mequiv{} Y \mmember{} \mBbbP{}\{[i | j']\})
Date html generated:
2020_05_20-PM-01_38_50
Last ObjectModification:
2020_04_03-PM-03_42_47
Theory : cubical!type!theory
Home
Index