Nuprl Lemma : ext-eq-psc_wf
∀[C:SmallCategory]. ∀[X,Y:ps_context{j:l}(C)].  (X ≡ Y ∈ ℙ{[i | j']})
Proof
Definitions occuring in Statement : 
ext-eq-psc: X ≡ Y
, 
ps_context: __⊢
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
, 
small-category: SmallCategory
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
ext-eq-psc: X ≡ Y
, 
ext-equal-presheaves: ext-equal-presheaves(C;F;G)
, 
small-category: SmallCategory
, 
ps_context: __⊢
, 
cat-functor: Functor(C1;C2)
, 
type-cat: TypeCat
, 
cat-comp: cat-comp(C)
, 
op-cat: op-cat(C)
, 
cat-arrow: cat-arrow(C)
, 
cat-ob: cat-ob(C)
, 
spreadn: spread4, 
pi2: snd(t)
, 
all: ∀x:A. B[x]
, 
pi1: fst(t)
, 
prop: ℙ
, 
and: P ∧ Q
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
uimplies: b supposing a
, 
ext-eq: A ≡ B
Lemmas referenced : 
cat_id_tuple_lemma, 
ob_pair_lemma, 
arrow_pair_lemma, 
ext-eq_wf, 
equal_wf, 
subtype_rel_dep_function, 
ps_context_wf, 
small-category-cumulativity-2, 
small-category_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
cut, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
productElimination, 
sqequalRule, 
introduction, 
extract_by_obid, 
dependent_functionElimination, 
Error :memTop, 
hypothesis, 
productEquality, 
functionEquality, 
cumulativity, 
hypothesisEquality, 
instantiate, 
isectElimination, 
applyEquality, 
lambdaEquality_alt, 
universeIsType, 
independent_isectElimination, 
lambdaFormation_alt, 
because_Cache
Latex:
\mforall{}[C:SmallCategory].  \mforall{}[X,Y:ps\_context\{j:l\}(C)].    (X  \mequiv{}  Y  \mmember{}  \mBbbP{}\{[i  |  j']\})
Date html generated:
2020_05_20-PM-01_23_10
Last ObjectModification:
2020_03_31-PM-07_20_10
Theory : presheaf!models!of!type!theory
Home
Index