Nuprl Lemma : ext-eq-psc_wf

[C:SmallCategory]. ∀[X,Y:ps_context{j:l}(C)].  (X ≡ Y ∈ ℙ{[i j']})


Proof




Definitions occuring in Statement :  ext-eq-psc: X ≡ Y ps_context: __⊢ uall: [x:A]. B[x] prop: member: t ∈ T small-category: SmallCategory
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T ext-eq-psc: X ≡ Y ext-equal-presheaves: ext-equal-presheaves(C;F;G) small-category: SmallCategory ps_context: __⊢ cat-functor: Functor(C1;C2) type-cat: TypeCat cat-comp: cat-comp(C) op-cat: op-cat(C) cat-arrow: cat-arrow(C) cat-ob: cat-ob(C) spreadn: spread4 pi2: snd(t) all: x:A. B[x] pi1: fst(t) prop: and: P ∧ Q subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a ext-eq: A ≡ B
Lemmas referenced :  cat_id_tuple_lemma ob_pair_lemma arrow_pair_lemma ext-eq_wf equal_wf subtype_rel_dep_function ps_context_wf small-category-cumulativity-2 small-category_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut sqequalHypSubstitution setElimination thin rename productElimination sqequalRule introduction extract_by_obid dependent_functionElimination Error :memTop,  hypothesis productEquality functionEquality cumulativity hypothesisEquality instantiate isectElimination applyEquality lambdaEquality_alt universeIsType independent_isectElimination lambdaFormation_alt because_Cache

Latex:
\mforall{}[C:SmallCategory].  \mforall{}[X,Y:ps\_context\{j:l\}(C)].    (X  \mequiv{}  Y  \mmember{}  \mBbbP{}\{[i  |  j']\})



Date html generated: 2020_05_20-PM-01_23_10
Last ObjectModification: 2020_03_31-PM-07_20_10

Theory : presheaf!models!of!type!theory


Home Index