Nuprl Lemma : face-forall-subset
∀[Gamma,phi,xx:Top].  ((Gamma, xx ⊢ ∀ phi) ~ (Gamma ⊢ ∀ phi))
Proof
Definitions occuring in Statement : 
face-forall: (∀ phi)
, 
context-subset: Gamma, phi
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
sqequal: s ~ t
Definitions unfolded in proof : 
face-forall: (∀ phi)
, 
context-subset: Gamma, phi
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
top: Top
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
cube_set_restriction_pair_lemma, 
top_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hypothesis, 
isect_memberFormation, 
sqequalAxiom, 
isectElimination, 
hypothesisEquality, 
because_Cache
Latex:
\mforall{}[Gamma,phi,xx:Top].    ((Gamma,  xx  \mvdash{}  \mforall{}  phi)  \msim{}  (Gamma  \mvdash{}  \mforall{}  phi))
Date html generated:
2018_05_23-AM-09_28_36
Last ObjectModification:
2018_05_20-PM-06_26_24
Theory : cubical!type!theory
Home
Index