Step
*
of Lemma
fst-transprt-const-sigma
No Annotations
∀[X:j⊢]. ∀[A:{X ⊢ _}]. ∀[B:{X.A ⊢ _}]. ∀[cA:X +⊢ Compositon(A)]. ∀[cB:X.A +⊢ Compositon(B)]. ∀[pr:{X ⊢ _:Σ A B}].
(transprt-const(X;sigma_comp(cA;cB);pr).1 = transprt-const(X;cA;pr.1) ∈ {X ⊢ _:A})
BY
{ (Intros
THEN Unfold `transprt-const` 0
THEN (Assert ⌜pr ∈ {X ⊢ _:(Σ (A)p (B)p+)[0(𝕀)]}⌝⋅
THENM ((InstLemmaIJ `fst-transprt-sigma` [⌜X⌝;⌜(A)p⌝;⌜(B)p+⌝;⌜(cA)p⌝;⌜(cB)p+⌝;⌜pr⌝]⋅ THENA Auto)
THEN (RWW "csm-sigma_comp" 0 THENA Auto)
)
)
THEN InferEqualType
THEN Try (Trivial)
THEN EqCDA
THEN Auto) }
1
1. X : CubicalSet{j}
2. A : {X ⊢ _}
3. B : {X.A ⊢ _}
4. cA : X +⊢ Compositon(A)
5. cB : X.A +⊢ Compositon(B)
6. pr : {X ⊢ _:Σ A B}
⊢ Σ A B = (Σ (A)p (B)p+)[0(𝕀)] ∈ {X ⊢ _}
Latex:
Latex:
No Annotations
\mforall{}[X:j\mvdash{}]. \mforall{}[A:\{X \mvdash{} \_\}]. \mforall{}[B:\{X.A \mvdash{} \_\}]. \mforall{}[cA:X +\mvdash{} Compositon(A)]. \mforall{}[cB:X.A +\mvdash{} Compositon(B)].
\mforall{}[pr:\{X \mvdash{} \_:\mSigma{} A B\}].
(transprt-const(X;sigma\_comp(cA;cB);pr).1 = transprt-const(X;cA;pr.1))
By
Latex:
(Intros
THEN Unfold `transprt-const` 0
THEN (Assert \mkleeneopen{}pr \mmember{} \{X \mvdash{} \_:(\mSigma{} (A)p (B)p+)[0(\mBbbI{})]\}\mkleeneclose{}\mcdot{}
THENM ((InstLemmaIJ `fst-transprt-sigma` [\mkleeneopen{}X\mkleeneclose{};\mkleeneopen{}(A)p\mkleeneclose{};\mkleeneopen{}(B)p+\mkleeneclose{};\mkleeneopen{}(cA)p\mkleeneclose{};\mkleeneopen{}(cB)p+\mkleeneclose{};\mkleeneopen{}pr\mkleeneclose{}]\mcdot{} THENA Auto)
THEN (RWW "csm-sigma\_comp" 0 THENA Auto)
)
)
THEN InferEqualType
THEN Try (Trivial)
THEN EqCDA
THEN Auto)
Home
Index