Nuprl Lemma : fst-transprt-const-sigma

[X:j⊢]. ∀[A:{X ⊢ _}]. ∀[B:{X.A ⊢ _}]. ∀[cA:X +⊢ Compositon(A)]. ∀[cB:X.A +⊢ Compositon(B)]. ∀[pr:{X ⊢ _:Σ B}].
  (transprt-const(X;sigma_comp(cA;cB);pr).1 transprt-const(X;cA;pr.1) ∈ {X ⊢ _:A})


Proof




Definitions occuring in Statement :  sigma_comp: sigma_comp(cA;cB) transprt-const: transprt-const(G;cA;a) composition-structure: Gamma ⊢ Compositon(A) cubical-fst: p.1 cubical-sigma: Σ B cube-context-adjoin: X.A cubical-term: {X ⊢ _:A} cubical-type: {X ⊢ _} cubical_set: CubicalSet uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] transprt-const: transprt-const(G;cA;a) member: t ∈ T uimplies: supposing a subtype_rel: A ⊆B csm-comp-structure: (cA)tau cubical-type: {X ⊢ _} cc-fst: p interval-type: 𝕀 csm+: tau+ csm-ap-type: (AF)s csm-comp: F cc-snd: q constant-cubical-type: (X) csm-adjoin: (s;u) compose: g csm-ap: (s)x all: x:A. B[x] squash: T prop: true: True guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q interval-0: 0(𝕀) csm-id-adjoin: [u] csm-id: 1(X) pi2: snd(t) pi1: fst(t)
Lemmas referenced :  cubical-term-eqcd fst-transprt-sigma csm-ap-type_wf cube-context-adjoin_wf interval-type_wf cc-fst_wf_interval cubical_set_cumulativity-i-j cubical-type-cumulativity2 csm+_wf csm-comp-structure_wf csm-sigma_comp csm_id_adjoin_fst_type_lemma csm-ap-id-type istype-cubical-term cubical-sigma_wf composition-structure_wf cubical-type_wf cubical_set_wf equal_wf squash_wf true_wf istype-universe csm-cubical-sigma csm-id-adjoin_wf-interval-0 subtype_rel_self iff_weakening_equal csm-adjoin-p-q
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality equalityTransitivity hypothesis equalitySymmetry independent_isectElimination applyEquality lambdaEquality_alt cumulativity universeIsType universeEquality sqequalRule hyp_replacement instantiate because_Cache setElimination rename productElimination Error :memTop,  dependent_functionElimination imageElimination natural_numberEquality imageMemberEquality baseClosed independent_functionElimination

Latex:
\mforall{}[X:j\mvdash{}].  \mforall{}[A:\{X  \mvdash{}  \_\}].  \mforall{}[B:\{X.A  \mvdash{}  \_\}].  \mforall{}[cA:X  +\mvdash{}  Compositon(A)].  \mforall{}[cB:X.A  +\mvdash{}  Compositon(B)].
\mforall{}[pr:\{X  \mvdash{}  \_:\mSigma{}  A  B\}].
    (transprt-const(X;sigma\_comp(cA;cB);pr).1  =  transprt-const(X;cA;pr.1))



Date html generated: 2020_05_20-PM-05_00_55
Last ObjectModification: 2020_04_18-PM-00_29_09

Theory : cubical!type!theory


Home Index