Nuprl Lemma : fst-transprt-const-sigma
∀[X:j⊢]. ∀[A:{X ⊢ _}]. ∀[B:{X.A ⊢ _}]. ∀[cA:X +⊢ Compositon(A)]. ∀[cB:X.A +⊢ Compositon(B)]. ∀[pr:{X ⊢ _:Σ A B}].
  (transprt-const(X;sigma_comp(cA;cB);pr).1 = transprt-const(X;cA;pr.1) ∈ {X ⊢ _:A})
Proof
Definitions occuring in Statement : 
sigma_comp: sigma_comp(cA;cB)
, 
transprt-const: transprt-const(G;cA;a)
, 
composition-structure: Gamma ⊢ Compositon(A)
, 
cubical-fst: p.1
, 
cubical-sigma: Σ A B
, 
cube-context-adjoin: X.A
, 
cubical-term: {X ⊢ _:A}
, 
cubical-type: {X ⊢ _}
, 
cubical_set: CubicalSet
, 
uall: ∀[x:A]. B[x]
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
transprt-const: transprt-const(G;cA;a)
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
csm-comp-structure: (cA)tau
, 
cubical-type: {X ⊢ _}
, 
cc-fst: p
, 
interval-type: 𝕀
, 
csm+: tau+
, 
csm-ap-type: (AF)s
, 
csm-comp: G o F
, 
cc-snd: q
, 
constant-cubical-type: (X)
, 
csm-adjoin: (s;u)
, 
compose: f o g
, 
csm-ap: (s)x
, 
all: ∀x:A. B[x]
, 
squash: ↓T
, 
prop: ℙ
, 
true: True
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
, 
interval-0: 0(𝕀)
, 
csm-id-adjoin: [u]
, 
csm-id: 1(X)
, 
pi2: snd(t)
, 
pi1: fst(t)
Lemmas referenced : 
cubical-term-eqcd, 
fst-transprt-sigma, 
csm-ap-type_wf, 
cube-context-adjoin_wf, 
interval-type_wf, 
cc-fst_wf_interval, 
cubical_set_cumulativity-i-j, 
cubical-type-cumulativity2, 
csm+_wf, 
csm-comp-structure_wf, 
csm-sigma_comp, 
csm_id_adjoin_fst_type_lemma, 
csm-ap-id-type, 
istype-cubical-term, 
cubical-sigma_wf, 
composition-structure_wf, 
cubical-type_wf, 
cubical_set_wf, 
equal_wf, 
squash_wf, 
true_wf, 
istype-universe, 
csm-cubical-sigma, 
csm-id-adjoin_wf-interval-0, 
subtype_rel_self, 
iff_weakening_equal, 
csm-adjoin-p-q
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
equalityTransitivity, 
hypothesis, 
equalitySymmetry, 
independent_isectElimination, 
applyEquality, 
lambdaEquality_alt, 
cumulativity, 
universeIsType, 
universeEquality, 
sqequalRule, 
hyp_replacement, 
instantiate, 
because_Cache, 
setElimination, 
rename, 
productElimination, 
Error :memTop, 
dependent_functionElimination, 
imageElimination, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
independent_functionElimination
Latex:
\mforall{}[X:j\mvdash{}].  \mforall{}[A:\{X  \mvdash{}  \_\}].  \mforall{}[B:\{X.A  \mvdash{}  \_\}].  \mforall{}[cA:X  +\mvdash{}  Compositon(A)].  \mforall{}[cB:X.A  +\mvdash{}  Compositon(B)].
\mforall{}[pr:\{X  \mvdash{}  \_:\mSigma{}  A  B\}].
    (transprt-const(X;sigma\_comp(cA;cB);pr).1  =  transprt-const(X;cA;pr.1))
Date html generated:
2020_05_20-PM-05_00_55
Last ObjectModification:
2020_04_18-PM-00_29_09
Theory : cubical!type!theory
Home
Index