Step
*
of Lemma
nh-comp-is-id
∀[I,J:fset(ℕ)].
∀[f:I ⟶ J]. ∀[g:J ⟶ I].
g ⋅ f = 1 ∈ I ⟶ I supposing ∀x:names(I). (((g x) = <x> ∈ Point(dM(J))) ∧ ((f x) = <x> ∈ Point(dM(I))))
supposing I ⊆ J
BY
{ (Auto
THEN Unfold `names-hom` 0
THEN FunExt
THEN Auto
THEN RepUR ``nh-id nh-comp dma-lift-compose`` 0
THEN Fold `dM` 0
THEN Fold `dM-lift` 0) }
1
1. I : fset(ℕ)
2. J : fset(ℕ)
3. I ⊆ J
4. f : I ⟶ J
5. g : J ⟶ I
6. ∀x:names(I). (((g x) = <x> ∈ Point(dM(J))) ∧ ((f x) = <x> ∈ Point(dM(I))))
7. x : names(I)
⊢ (dM-lift(I;J;f) (g x)) = <x> ∈ Point(dM(I))
Latex:
Latex:
\mforall{}[I,J:fset(\mBbbN{})].
\mforall{}[f:I {}\mrightarrow{} J]. \mforall{}[g:J {}\mrightarrow{} I]. g \mcdot{} f = 1 supposing \mforall{}x:names(I). (((g x) = <x>) \mwedge{} ((f x) = <x>))
supposing I \msubseteq{} J
By
Latex:
(Auto
THEN Unfold `names-hom` 0
THEN FunExt
THEN Auto
THEN RepUR ``nh-id nh-comp dma-lift-compose`` 0
THEN Fold `dM` 0
THEN Fold `dM-lift` 0)
Home
Index