Nuprl Lemma : nh-comp-is-id

[I,J:fset(ℕ)].
  ∀[f:I ⟶ J]. ∀[g:J ⟶ I].
    g ⋅ 1 ∈ I ⟶ supposing ∀x:names(I). (((g x) = <x> ∈ Point(dM(J))) ∧ ((f x) = <x> ∈ Point(dM(I)))) 
  supposing I ⊆ J


Proof




Definitions occuring in Statement :  nh-comp: g ⋅ f nh-id: 1 names-hom: I ⟶ J dM_inc: <x> dM: dM(I) names: names(I) lattice-point: Point(l) f-subset: xs ⊆ ys fset: fset(T) int-deq: IntDeq nat: uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] and: P ∧ Q apply: a equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a names-hom: I ⟶ J nh-id: 1 nh-comp: g ⋅ f dma-lift-compose: dma-lift-compose(I;J;eqi;eqj;f;g) compose: g dM: dM(I) dM-lift: dM-lift(I;J;f) prop: so_lambda: λ2x.t[x] and: P ∧ Q subtype_rel: A ⊆B DeMorgan-algebra: DeMorganAlgebra guard: {T} so_apply: x[s] nat: squash: T dma-hom: dma-hom(dma1;dma2) bounded-lattice-hom: Hom(l1;l2) lattice-hom: Hom(l1;l2) all: x:A. B[x] true: True iff: ⇐⇒ Q rev_implies:  Q implies:  Q
Lemmas referenced :  names_wf all_wf equal_wf lattice-point_wf dM_wf subtype_rel_set DeMorgan-algebra-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype DeMorgan-algebra-structure-subtype subtype_rel_transitivity bounded-lattice-structure_wf bounded-lattice-axioms_wf uall_wf lattice-meet_wf lattice-join_wf DeMorgan-algebra-axioms_wf dM_inc_wf names-subtype names-hom_wf f-subset_wf nat_wf int-deq_wf strong-subtype-deq-subtype strong-subtype-set3 le_wf strong-subtype-self fset_wf squash_wf true_wf dM-lift_wf dma-hom_wf iff_weakening_equal dM-lift-is-id
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut functionExtensionality sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis lambdaEquality productEquality applyEquality instantiate independent_isectElimination cumulativity universeEquality because_Cache isect_memberEquality axiomEquality equalityTransitivity equalitySymmetry intEquality natural_numberEquality imageElimination setElimination rename setEquality dependent_functionElimination productElimination imageMemberEquality baseClosed independent_functionElimination dependent_set_memberEquality lambdaFormation

Latex:
\mforall{}[I,J:fset(\mBbbN{})].
    \mforall{}[f:I  {}\mrightarrow{}  J].  \mforall{}[g:J  {}\mrightarrow{}  I].    g  \mcdot{}  f  =  1  supposing  \mforall{}x:names(I).  (((g  x)  =  <x>)  \mwedge{}  ((f  x)  =  <x>)) 
    supposing  I  \msubseteq{}  J



Date html generated: 2017_10_05-AM-01_01_53
Last ObjectModification: 2017_07_28-AM-09_26_00

Theory : cubical!type!theory


Home Index