Nuprl Lemma : path-trans-sq

[G,pth,I,a,J,h,u:Top].  (PathTransport(pth) compOp(path-eta(pth)) new-name(J) <s(h(a)), <new-name(J)>> \000Cdiscr(⋅u)


Proof




Definitions occuring in Statement :  path-trans: PathTransport(p) universe-comp-op: compOp(t) path-eta: path-eta(pth) discrete-cubical-term: discr(t) face_lattice: face_lattice(I) cube-set-restriction: f(s) nc-s: s new-name: new-name(I) add-name: I+i dM_inc: <x> it: uall: [x:A]. B[x] top: Top apply: a pair: <a, b> sqequal: t lattice-0: 0
Definitions unfolded in proof :  uall: [x:A]. B[x] path-trans: PathTransport(p) univ-trans: univ-trans(G;T) transprt-fun: transprt-fun(Gamma;A;cA) cubical-lambda: b) member: t ∈ T interval-0: 0(𝕀) cc-snd: q csm-id-adjoin: [u] csm-ap-term: (t)s cc-fst: p csm-id: 1(X) csm-adjoin: (s;u) csm-ap: (s)x pi1: fst(t) pi2: snd(t) cubicalpath-app: pth r cubical-app: app(w; u) csm+: tau+ csm-comp-structure: (cA)tau transprt: transprt(G;cA;a0) csm-comp: F comp_term: comp cA [phi ⊢→ u] a0 compose: g comp-op-to-comp-fun: cop-to-cfun(cA) csm-composition: (comp)sigma cc-adjoin-cube: (v;u) face-0: 0(𝔽) composition-term: comp cA [phi ⊢→ u] a0 discrete-cubical-term: discr(t) cubical-term-at: u(a) cube-context-adjoin: X.A all: x:A. B[x]
Lemmas referenced :  istype-top cube_set_restriction_pair_lemma csm-universe-decode csm-path-eta
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt sqequalRule because_Cache inhabitedIsType hypothesisEquality cut introduction extract_by_obid hypothesis Error :memTop,  sqequalHypSubstitution dependent_functionElimination thin isectElimination

Latex:
\mforall{}[G,pth,I,a,J,h,u:Top].
    (PathTransport(pth)  I  a  J  h  u  \msim{}  compOp(path-eta(pth))  J  new-name(J)  <s(h(a)),  <new-name(J)>>  0  dis\000Ccr(\mcdot{})  u)



Date html generated: 2020_05_20-PM-07_32_47
Last ObjectModification: 2020_04_25-PM-10_33_05

Theory : cubical!type!theory


Home Index