Step
*
of Lemma
paths-are-refl-iff
No Annotations
∀[X:j⊢]. ∀[A:{X ⊢ _}].
uiff(∀Z:j⊢. ∀s:Z j⟶ X. ∀p:{Z ⊢ _:Path((A)s)}. (p = refl(p @ 0(𝕀)) ∈ {Z ⊢ _:Path((A)s)});∀Z:j⊢. ∀s:Z j⟶ X.
∀p:{Z ⊢ _:Path((A)s)}.
∀[x,y:{Z ⊢ _:𝕀}].
(p @ x
= p @ y
∈ {Z ⊢ _:(A)s}))
BY
{ (Intros THEN (RepeatFor 2 (D 0) THENA Auto)) }
1
1. X : CubicalSet{j}
2. A : {X ⊢ _}
3. ∀Z:j⊢. ∀s:Z j⟶ X. ∀p:{Z ⊢ _:Path((A)s)}. (p = refl(p @ 0(𝕀)) ∈ {Z ⊢ _:Path((A)s)})
⊢ ∀Z:j⊢. ∀s:Z j⟶ X. ∀p:{Z ⊢ _:Path((A)s)}. ∀[x,y:{Z ⊢ _:𝕀}]. (p @ x = p @ y ∈ {Z ⊢ _:(A)s})
2
1. X : CubicalSet{j}
2. A : {X ⊢ _}
3. ∀Z:j⊢. ∀s:Z j⟶ X. ∀p:{Z ⊢ _:Path((A)s)}. ∀[x,y:{Z ⊢ _:𝕀}]. (p @ x = p @ y ∈ {Z ⊢ _:(A)s})
⊢ ∀Z:j⊢. ∀s:Z j⟶ X. ∀p:{Z ⊢ _:Path((A)s)}. (p = refl(p @ 0(𝕀)) ∈ {Z ⊢ _:Path((A)s)})
Latex:
Latex:
No Annotations
\mforall{}[X:j\mvdash{}]. \mforall{}[A:\{X \mvdash{} \_\}].
uiff(\mforall{}Z:j\mvdash{}. \mforall{}s:Z j{}\mrightarrow{} X. \mforall{}p:\{Z \mvdash{} \_:Path((A)s)\}. (p = refl(p @ 0(\mBbbI{})));\mforall{}Z:j\mvdash{}. \mforall{}s:Z j{}\mrightarrow{} X.
\mforall{}p:\{Z \mvdash{} \_:Path((A)s)\}.
\mforall{}[x,y:\{Z \mvdash{} \_:\mBbbI{}\}].
(p @ x = p @ y))
By
Latex:
(Intros THEN (RepeatFor 2 (D 0) THENA Auto))
Home
Index