Nuprl Lemma : sub-cubical-set-and

[X:j⊢]. ∀[P,Q:I:fset(ℕ) ⟶ X(I) ⟶ ℙ].
  I,rho.P[I;rho] I,rho.Q[I;rho] ≡ I,rho.P[I;rho] ∧ Q[I;rho] 
  supposing cs-predicate(X;I,rho.P[I;rho]) ∧ cs-predicate(X;I,rho.Q[I;rho])


Proof




Definitions occuring in Statement :  sub-cubical-set: I,rho.P[I; rho] cs-predicate: cs-predicate(X;I,rho.P[I; rho]) I_cube: A(I) ext-eq-cs: X ≡ Y cubical_set: CubicalSet fset: fset(T) nat: uimplies: supposing a uall: [x:A]. B[x] prop: so_apply: x[s1;s2] and: P ∧ Q function: x:A ⟶ B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T cubical_set: CubicalSet cube-cat: CubeCat all: x:A. B[x] I_cube: A(I) I_set: A(I) cs-predicate: cs-predicate(X;I,rho.P[I; rho]) ext-eq-cs: X ≡ Y sub-cubical-set: I,rho.P[I; rho] sub-presheaf-set: I,rho.P[I; rho]
Lemmas referenced :  sub-presheaf-set-and cube-cat_wf cat_ob_pair_lemma
Rules used in proof :  cut introduction extract_by_obid sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isectElimination thin hypothesis sqequalRule dependent_functionElimination Error :memTop

Latex:
\mforall{}[X:j\mvdash{}].  \mforall{}[P,Q:I:fset(\mBbbN{})  {}\mrightarrow{}  X(I)  {}\mrightarrow{}  \mBbbP{}].
    X  |  I,rho.P[I;rho]  |  I,rho.Q[I;rho]  \mequiv{}  X  |  I,rho.P[I;rho]  \mwedge{}  Q[I;rho] 
    supposing  cs-predicate(X;I,rho.P[I;rho])  \mwedge{}  cs-predicate(X;I,rho.Q[I;rho])



Date html generated: 2020_05_20-PM-01_39_45
Last ObjectModification: 2020_04_03-PM-03_33_01

Theory : cubical!type!theory


Home Index