Nuprl Lemma : sub-presheaf-set-and
∀[C:SmallCategory]. ∀[X:ps_context{j:l}(C)]. ∀[P,Q:I:cat-ob(C) ⟶ X(I) ⟶ ℙ].
  X | I,rho.P[I;rho] | I,rho.Q[I;rho] ≡ X | I,rho.P[I;rho] ∧ Q[I;rho] 
  supposing psc-predicate(C; X; I,rho.P[I;rho]) ∧ psc-predicate(C; X; I,rho.Q[I;rho])
Proof
Definitions occuring in Statement : 
sub-presheaf-set: X | I,rho.P[I; rho]
, 
psc-predicate: psc-predicate(C; X; I,rho.P[I; rho])
, 
I_set: A(I)
, 
ext-eq-psc: X ≡ Y
, 
ps_context: __⊢
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s1;s2]
, 
and: P ∧ Q
, 
function: x:A ⟶ B[x]
, 
cat-ob: cat-ob(C)
, 
small-category: SmallCategory
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
and: P ∧ Q
, 
sub-presheaf-set: X | I,rho.P[I; rho]
, 
ext-eq-psc: X ≡ Y
, 
ps_context: __⊢
, 
psc-predicate: psc-predicate(C; X; I,rho.P[I; rho])
, 
presheaf: Presheaf(C)
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
I_set: A(I)
, 
subtype_rel: A ⊆r B
, 
all: ∀x:A. B[x]
, 
cat-ob: cat-ob(C)
, 
pi1: fst(t)
, 
type-cat: TypeCat
, 
cand: A c∧ B
, 
ext-equal-presheaves: ext-equal-presheaves(C;F;G)
, 
ext-eq: A ≡ B
, 
prop: ℙ
Lemmas referenced : 
presheaf-subset-and, 
functor-ob_wf, 
op-cat_wf, 
type-cat_wf, 
small-category-cumulativity-2, 
subtype_rel-equal, 
cat-ob_wf, 
cat_ob_op_lemma, 
subtype_rel_self, 
psc-predicate_wf, 
ps_context_cumulativity2, 
I_set_wf, 
ps_context_wf, 
small-category_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalHypSubstitution, 
productElimination, 
thin, 
instantiate, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality_alt, 
applyEquality, 
universeIsType, 
because_Cache, 
hypothesis, 
independent_isectElimination, 
dependent_functionElimination, 
universeEquality, 
independent_pairFormation, 
independent_pairEquality, 
axiomEquality, 
functionIsTypeImplies, 
inhabitedIsType, 
productIsType, 
cumulativity, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
functionIsType
Latex:
\mforall{}[C:SmallCategory].  \mforall{}[X:ps\_context\{j:l\}(C)].  \mforall{}[P,Q:I:cat-ob(C)  {}\mrightarrow{}  X(I)  {}\mrightarrow{}  \mBbbP{}].
    X  |  I,rho.P[I;rho]  |  I,rho.Q[I;rho]  \mequiv{}  X  |  I,rho.P[I;rho]  \mwedge{}  Q[I;rho] 
    supposing  psc-predicate(C;  X;  I,rho.P[I;rho])  \mwedge{}  psc-predicate(C;  X;  I,rho.Q[I;rho])
Date html generated:
2020_05_20-PM-01_23_35
Last ObjectModification:
2020_04_02-AM-09_50_53
Theory : presheaf!models!of!type!theory
Home
Index