Nuprl Lemma : presheaf-subset-and

[C:SmallCategory]. ∀[F:presheaf{j:l}(C)]. ∀[P,Q:I:cat-ob(C) ⟶ (F I) ⟶ ℙ].
  ext-equal-presheaves(C;F|I,rho.P[I;rho]|I,rho.Q[I;rho];F|I,rho.P[I;rho] ∧ Q[I;rho]) 
  supposing stable-element-predicate(C;F;I,rho.P[I;rho]) ∧ stable-element-predicate(C;F;I,rho.Q[I;rho])


Proof




Definitions occuring in Statement :  presheaf-subset: F|I,rho.P[I; rho] stable-element-predicate: stable-element-predicate(C;F;I,rho.P[I; rho]) ext-equal-presheaves: ext-equal-presheaves(C;F;G) presheaf: Presheaf(C) functor-ob: ob(F) cat-ob: cat-ob(C) small-category: SmallCategory uimplies: supposing a uall: [x:A]. B[x] prop: so_apply: x[s1;s2] and: P ∧ Q apply: a function: x:A ⟶ B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a and: P ∧ Q ext-equal-presheaves: ext-equal-presheaves(C;F;G) all: x:A. B[x] presheaf-subset: F|I,rho.P[I; rho] mk-presheaf: mk-presheaf so_lambda: so_lambda3 so_apply: x[s1;s2;s3] so_lambda: λ2x.t[x] so_apply: x[s] ext-eq: A ≡ B subtype_rel: A ⊆B so_lambda: λ2y.t[x; y] prop: so_apply: x[s1;s2] presheaf: Presheaf(C) cat-ob: cat-ob(C) pi1: fst(t) type-cat: TypeCat guard: {T} stable-element-predicate: stable-element-predicate(C;F;I,rho.P[I; rho]) implies:  Q
Lemmas referenced :  small-category_wf ob_mk_functor_lemma arrow_mk_functor_lemma cat-arrow_wf stable-element-predicate_wf small-category-cumulativity-2 presheaf-cumulativity1 functor-ob_wf op-cat_wf type-cat_wf subtype_rel-equal cat-ob_wf cat_ob_op_lemma subtype_rel_self cat_ob_pair_lemma functor-arrow_wf op-cat-arrow presheaf_wf1
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt universeIsType cut introduction extract_by_obid hypothesis sqequalHypSubstitution productElimination thin independent_pairFormation lambdaFormation_alt sqequalRule dependent_functionElimination Error :memTop,  because_Cache applyEquality isectElimination hypothesisEquality independent_pairEquality lambdaEquality_alt axiomEquality functionIsTypeImplies inhabitedIsType productIsType instantiate cumulativity independent_isectElimination universeEquality isect_memberEquality_alt isectIsTypeImplies functionIsType setElimination rename dependent_set_memberEquality_alt setIsType functionExtensionality setEquality independent_functionElimination

Latex:
\mforall{}[C:SmallCategory].  \mforall{}[F:presheaf\{j:l\}(C)].  \mforall{}[P,Q:I:cat-ob(C)  {}\mrightarrow{}  (F  I)  {}\mrightarrow{}  \mBbbP{}].
    ext-equal-presheaves(C;F|I,rho.P[I;rho]|I,rho.Q[I;rho];F|I,rho.P[I;rho]  \mwedge{}  Q[I;rho]) 
    supposing  stable-element-predicate(C;F;I,rho.P[I;rho])
    \mwedge{}  stable-element-predicate(C;F;I,rho.Q[I;rho])



Date html generated: 2020_05_20-AM-07_57_39
Last ObjectModification: 2020_04_02-AM-09_48_25

Theory : small!categories


Home Index