Nuprl Lemma : presheaf-cumulativity1
∀[C:SmallCategory]. (presheaf{j:l}(C) ⊆r presheaf{[i | j]:l}(C))
Proof
Definitions occuring in Statement : 
presheaf: Presheaf(C)
, 
small-category: SmallCategory
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
presheaf: Presheaf(C)
, 
cat-functor: Functor(C1;C2)
, 
type-cat: TypeCat
, 
all: ∀x:A. B[x]
, 
cat-arrow: cat-arrow(C)
, 
pi1: fst(t)
, 
pi2: snd(t)
, 
cat-id: cat-id(C)
, 
cat-comp: cat-comp(C)
, 
and: P ∧ Q
Lemmas referenced : 
small-category_wf, 
cat_arrow_triple_lemma, 
cat_ob_pair_lemma, 
cat-ob_wf, 
op-cat_wf, 
cat-arrow_wf, 
type-cat_wf, 
cat-id_wf, 
cat-comp_wf, 
presheaf_wf1
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
lambdaEquality_alt, 
sqequalRule, 
axiomEquality, 
hypothesis, 
universeIsType, 
extract_by_obid, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
dependent_set_memberEquality_alt, 
productElimination, 
dependent_pairEquality_alt, 
dependent_functionElimination, 
Error :memTop, 
functionExtensionality, 
cumulativity, 
applyEquality, 
hypothesisEquality, 
isectElimination, 
functionIsType, 
because_Cache, 
instantiate, 
productIsType, 
equalityIstype
Latex:
\mforall{}[C:SmallCategory].  (presheaf\{j:l\}(C)  \msubseteq{}r  presheaf\{[i  |  j]:l\}(C))
Date html generated:
2020_05_20-AM-07_52_40
Last ObjectModification:
2020_04_01-AM-00_52_38
Theory : small!categories
Home
Index