Nuprl Lemma : sub-cubical-set-true
∀[X:j⊢]. X | I,rho.True ≡ X
Proof
Definitions occuring in Statement : 
sub-cubical-set: X | I,rho.P[I; rho]
, 
ext-eq-cs: X ≡ Y
, 
cubical_set: CubicalSet
, 
uall: ∀[x:A]. B[x]
, 
true: True
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
cubical_set: CubicalSet
, 
ext-eq-cs: X ≡ Y
, 
sub-cubical-set: X | I,rho.P[I; rho]
, 
sub-presheaf-set: X | I,rho.P[I; rho]
Lemmas referenced : 
sub-presheaf-set-true, 
cube-cat_wf
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isectElimination, 
thin, 
hypothesis, 
sqequalRule
Latex:
\mforall{}[X:j\mvdash{}].  X  |  I,rho.True  \mequiv{}  X
Date html generated:
2020_05_20-PM-01_39_39
Last ObjectModification:
2020_04_03-PM-03_32_57
Theory : cubical!type!theory
Home
Index