Nuprl Lemma : sub-cubical-set-true

[X:j⊢]. I,rho.True ≡ X


Proof




Definitions occuring in Statement :  sub-cubical-set: I,rho.P[I; rho] ext-eq-cs: X ≡ Y cubical_set: CubicalSet uall: [x:A]. B[x] true: True
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T cubical_set: CubicalSet ext-eq-cs: X ≡ Y sub-cubical-set: I,rho.P[I; rho] sub-presheaf-set: I,rho.P[I; rho]
Lemmas referenced :  sub-presheaf-set-true cube-cat_wf
Rules used in proof :  cut introduction extract_by_obid sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isectElimination thin hypothesis sqequalRule

Latex:
\mforall{}[X:j\mvdash{}].  X  |  I,rho.True  \mequiv{}  X



Date html generated: 2020_05_20-PM-01_39_39
Last ObjectModification: 2020_04_03-PM-03_32_57

Theory : cubical!type!theory


Home Index