Nuprl Lemma : sub-presheaf-set-true
∀[C:SmallCategory]. ∀[X:ps_context{j:l}(C)].  X | I,rho.True ≡ X
Proof
Definitions occuring in Statement : 
sub-presheaf-set: X | I,rho.P[I; rho]
, 
ext-eq-psc: X ≡ Y
, 
ps_context: __⊢
, 
uall: ∀[x:A]. B[x]
, 
true: True
, 
small-category: SmallCategory
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
sub-presheaf-set: X | I,rho.P[I; rho]
, 
ext-eq-psc: X ≡ Y
, 
subtype_rel: A ⊆r B
, 
ext-equal-presheaves: ext-equal-presheaves(C;F;G)
, 
and: P ∧ Q
, 
all: ∀x:A. B[x]
, 
ext-eq: A ≡ B
, 
presheaf: Presheaf(C)
, 
ps_context: __⊢
Lemmas referenced : 
presheaf-subset-true, 
small-category-cumulativity-2, 
ps_context_wf, 
small-category_wf, 
ps_context_cumulativity2
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
thin, 
instantiate, 
extract_by_obid, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
applyEquality, 
sqequalRule, 
productElimination, 
independent_pairEquality, 
lambdaEquality_alt, 
dependent_functionElimination, 
axiomEquality, 
functionIsTypeImplies, 
inhabitedIsType, 
universeIsType, 
isect_memberEquality_alt, 
isectIsTypeImplies
Latex:
\mforall{}[C:SmallCategory].  \mforall{}[X:ps\_context\{j:l\}(C)].    X  |  I,rho.True  \mequiv{}  X
Date html generated:
2020_05_20-PM-01_23_33
Last ObjectModification:
2020_04_01-AM-10_45_02
Theory : presheaf!models!of!type!theory
Home
Index