Nuprl Lemma : sub-presheaf-set-true

[C:SmallCategory]. ∀[X:ps_context{j:l}(C)].  I,rho.True ≡ X


Proof




Definitions occuring in Statement :  sub-presheaf-set: I,rho.P[I; rho] ext-eq-psc: X ≡ Y ps_context: __⊢ uall: [x:A]. B[x] true: True small-category: SmallCategory
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T sub-presheaf-set: I,rho.P[I; rho] ext-eq-psc: X ≡ Y subtype_rel: A ⊆B ext-equal-presheaves: ext-equal-presheaves(C;F;G) and: P ∧ Q all: x:A. B[x] ext-eq: A ≡ B presheaf: Presheaf(C) ps_context: __⊢
Lemmas referenced :  presheaf-subset-true small-category-cumulativity-2 ps_context_wf small-category_wf ps_context_cumulativity2
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut thin instantiate extract_by_obid hypothesis sqequalHypSubstitution isectElimination hypothesisEquality applyEquality sqequalRule productElimination independent_pairEquality lambdaEquality_alt dependent_functionElimination axiomEquality functionIsTypeImplies inhabitedIsType universeIsType isect_memberEquality_alt isectIsTypeImplies

Latex:
\mforall{}[C:SmallCategory].  \mforall{}[X:ps\_context\{j:l\}(C)].    X  |  I,rho.True  \mequiv{}  X



Date html generated: 2020_05_20-PM-01_23_33
Last ObjectModification: 2020_04_01-AM-10_45_02

Theory : presheaf!models!of!type!theory


Home Index