Nuprl Lemma : sub-cubical-set_functionality
∀[X:j⊢]. ∀[P,Q:I:fset(ℕ) ⟶ X(I) ⟶ ℙ].
  X | I,rho.P[I;rho] ≡ X | I,rho.Q[I;rho] 
  supposing (∀I:fset(ℕ). ∀rho:X(I).  (P[I;rho] 
⇐⇒ Q[I;rho])) ∧ cs-predicate(X;I,rho.P[I;rho])
Proof
Definitions occuring in Statement : 
sub-cubical-set: X | I,rho.P[I; rho]
, 
cs-predicate: cs-predicate(X;I,rho.P[I; rho])
, 
I_cube: A(I)
, 
ext-eq-cs: X ≡ Y
, 
cubical_set: CubicalSet
, 
fset: fset(T)
, 
nat: ℕ
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s1;s2]
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
cubical_set: CubicalSet
, 
cube-cat: CubeCat
, 
all: ∀x:A. B[x]
, 
I_cube: A(I)
, 
I_set: A(I)
, 
cs-predicate: cs-predicate(X;I,rho.P[I; rho])
, 
ext-eq-cs: X ≡ Y
, 
sub-cubical-set: X | I,rho.P[I; rho]
, 
sub-presheaf-set: X | I,rho.P[I; rho]
Lemmas referenced : 
sub-presheaf-set_functionality, 
cube-cat_wf, 
cat_ob_pair_lemma
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isectElimination, 
thin, 
hypothesis, 
sqequalRule, 
dependent_functionElimination, 
Error :memTop
Latex:
\mforall{}[X:j\mvdash{}].  \mforall{}[P,Q:I:fset(\mBbbN{})  {}\mrightarrow{}  X(I)  {}\mrightarrow{}  \mBbbP{}].
    X  |  I,rho.P[I;rho]  \mequiv{}  X  |  I,rho.Q[I;rho] 
    supposing  (\mforall{}I:fset(\mBbbN{}).  \mforall{}rho:X(I).    (P[I;rho]  \mLeftarrow{}{}\mRightarrow{}  Q[I;rho]))  \mwedge{}  cs-predicate(X;I,rho.P[I;rho])
Date html generated:
2020_05_20-PM-01_39_33
Last ObjectModification:
2020_04_03-PM-03_32_54
Theory : cubical!type!theory
Home
Index