Nuprl Lemma : sub-presheaf-set_functionality

[C:SmallCategory]. ∀[X:ps_context{j:l}(C)]. ∀[P,Q:I:cat-ob(C) ⟶ X(I) ⟶ ℙ].
  I,rho.P[I;rho] ≡ I,rho.Q[I;rho] 
  supposing (∀I:cat-ob(C). ∀rho:X(I).  (P[I;rho] ⇐⇒ Q[I;rho])) ∧ psc-predicate(C; X; I,rho.P[I;rho])


Proof




Definitions occuring in Statement :  sub-presheaf-set: I,rho.P[I; rho] psc-predicate: psc-predicate(C; X; I,rho.P[I; rho]) I_set: A(I) ext-eq-psc: X ≡ Y ps_context: __⊢ uimplies: supposing a uall: [x:A]. B[x] prop: so_apply: x[s1;s2] all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q function: x:A ⟶ B[x] cat-ob: cat-ob(C) small-category: SmallCategory
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a and: P ∧ Q ext-eq-psc: X ≡ Y ext-equal-presheaves: ext-equal-presheaves(C;F;G) sub-presheaf-set: I,rho.P[I; rho] presheaf-subset: F|I,rho.P[I; rho] mk-presheaf: mk-presheaf all: x:A. B[x] so_lambda: so_lambda3 so_apply: x[s1;s2;s3] so_lambda: λ2x.t[x] so_apply: x[s] subtype_rel: A ⊆B ps_context: __⊢ so_apply: x[s1;s2] prop: I_set: A(I) ext-eq: A ≡ B iff: ⇐⇒ Q implies:  Q rev_implies:  Q so_lambda: λ2y.t[x; y] guard: {T} psc-predicate: psc-predicate(C; X; I,rho.P[I; rho]) stable-element-predicate: stable-element-predicate(C;F;I,rho.P[I; rho])
Lemmas referenced :  ob_mk_functor_lemma arrow_mk_functor_lemma functor-arrow_wf op-cat_wf type-cat_wf subtype_rel-equal cat-ob_wf cat_ob_op_lemma cat-arrow_wf op-cat-arrow functor-ob_wf I_set_wf psc-predicate_wf small-category-cumulativity-2 ps_context_cumulativity2 ps_context_wf small-category_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalHypSubstitution productElimination thin independent_pairFormation sqequalRule extract_by_obid dependent_functionElimination Error :memTop,  hypothesis lambdaFormation_alt because_Cache lambdaEquality_alt setElimination rename dependent_set_memberEquality_alt applyEquality instantiate isectElimination hypothesisEquality independent_isectElimination universeIsType setIsType independent_pairEquality axiomEquality functionIsTypeImplies inhabitedIsType productIsType functionIsType cumulativity isect_memberEquality_alt isectIsTypeImplies universeEquality independent_functionElimination

Latex:
\mforall{}[C:SmallCategory].  \mforall{}[X:ps\_context\{j:l\}(C)].  \mforall{}[P,Q:I:cat-ob(C)  {}\mrightarrow{}  X(I)  {}\mrightarrow{}  \mBbbP{}].
    X  |  I,rho.P[I;rho]  \mequiv{}  X  |  I,rho.Q[I;rho] 
    supposing  (\mforall{}I:cat-ob(C).  \mforall{}rho:X(I).    (P[I;rho]  \mLeftarrow{}{}\mRightarrow{}  Q[I;rho]))
    \mwedge{}  psc-predicate(C;  X;  I,rho.P[I;rho])



Date html generated: 2020_05_20-PM-01_23_31
Last ObjectModification: 2020_04_01-AM-10_45_19

Theory : presheaf!models!of!type!theory


Home Index