Nuprl Lemma : sub_cubical_set_weakening

[X,Z:j⊢].  sub_cubical_set{j:l}(Z; X) supposing X ∈ CubicalSet{j}


Proof




Definitions occuring in Statement :  sub_cubical_set: Y ⊆ X cubical_set: CubicalSet uimplies: supposing a uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T cubical_set: CubicalSet sub_cubical_set: Y ⊆ X sub_ps_context: Y ⊆ X cube_set_map: A ⟶ B csm-id: 1(X) pscm-id: 1(X)
Lemmas referenced :  sub_ps_context_weakening cube-cat_wf
Rules used in proof :  cut introduction extract_by_obid sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isectElimination thin hypothesis sqequalRule

Latex:
\mforall{}[X,Z:j\mvdash{}].    sub\_cubical\_set\{j:l\}(Z;  X)  supposing  Z  =  X



Date html generated: 2020_05_20-PM-01_43_19
Last ObjectModification: 2020_04_03-PM-04_09_49

Theory : cubical!type!theory


Home Index