Nuprl Lemma : sub_ps_context_weakening

[C:SmallCategory]. ∀[X,Z:ps_context{j:l}(C)].  sub_ps_context{j:l}(C; Z; X) supposing X ∈ ps_context{j:l}(C)


Proof




Definitions occuring in Statement :  sub_ps_context: Y ⊆ X ps_context: __⊢ uimplies: supposing a uall: [x:A]. B[x] equal: t ∈ T small-category: SmallCategory
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a sub_ps_context: Y ⊆ X subtype_rel: A ⊆B psc_map: A ⟶ B nat-trans: nat-trans(C;D;F;G) cat-ob: cat-ob(C) pi1: fst(t) op-cat: op-cat(C) spreadn: spread4 cat-arrow: cat-arrow(C) pi2: snd(t) type-cat: TypeCat all: x:A. B[x] cat-comp: cat-comp(C) compose: g
Lemmas referenced :  pscm-id_wf small-category-cumulativity-2 ps_context_cumulativity2 subtype_rel_self psc_map_wf sub_ps_context_wf ps_context_wf small-category_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut hypothesis thin instantiate extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality applyEquality sqequalRule hyp_replacement equalitySymmetry applyLambdaEquality because_Cache axiomEquality equalityTransitivity equalityIstype inhabitedIsType isect_memberEquality_alt isectIsTypeImplies universeIsType

Latex:
\mforall{}[C:SmallCategory].  \mforall{}[X,Z:ps\_context\{j:l\}(C)].    sub\_ps\_context\{j:l\}(C;  Z;  X)  supposing  Z  =  X



Date html generated: 2020_05_20-PM-01_24_46
Last ObjectModification: 2020_04_01-AM-09_55_24

Theory : presheaf!models!of!type!theory


Home Index