Nuprl Lemma : subset-restriction

[X,Y:j⊢].  ∀[I,J:fset(ℕ)]. ∀[f:J ⟶ I]. ∀[a:Y(I)].  (f(a) f(a) ∈ X(J)) supposing sub_cubical_set{j:l}(Y; X)


Proof




Definitions occuring in Statement :  sub_cubical_set: Y ⊆ X cube-set-restriction: f(s) I_cube: A(I) cubical_set: CubicalSet names-hom: I ⟶ J fset: fset(T) nat: uimplies: supposing a uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T cubical_set: CubicalSet sub_cubical_set: Y ⊆ X sub_ps_context: Y ⊆ X cube_set_map: A ⟶ B csm-id: 1(X) pscm-id: 1(X) cube-cat: CubeCat all: x:A. B[x] I_cube: A(I) I_set: A(I) cube-set-restriction: f(s) psc-restriction: f(s)
Lemmas referenced :  ps-subset-restriction cube-cat_wf cat_ob_pair_lemma cat_arrow_triple_lemma
Rules used in proof :  cut introduction extract_by_obid sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isectElimination thin hypothesis sqequalRule dependent_functionElimination Error :memTop

Latex:
\mforall{}[X,Y:j\mvdash{}].
    \mforall{}[I,J:fset(\mBbbN{})].  \mforall{}[f:J  {}\mrightarrow{}  I].  \mforall{}[a:Y(I)].    (f(a)  =  f(a))  supposing  sub\_cubical\_set\{j:l\}(Y;  X)



Date html generated: 2020_05_20-PM-01_43_44
Last ObjectModification: 2020_04_03-PM-04_09_52

Theory : cubical!type!theory


Home Index