Nuprl Lemma : ps-subset-restriction

[C:SmallCategory]. ∀[X,Y:ps_context{j:l}(C)].
  ∀[I,J:cat-ob(C)]. ∀[f:cat-arrow(C) I]. ∀[a:Y(I)].  (f(a) f(a) ∈ X(J)) supposing sub_ps_context{j:l}(C; Y; X)


Proof




Definitions occuring in Statement :  sub_ps_context: Y ⊆ X psc-restriction: f(s) I_set: A(I) ps_context: __⊢ uimplies: supposing a uall: [x:A]. B[x] apply: a equal: t ∈ T cat-arrow: cat-arrow(C) cat-ob: cat-ob(C) small-category: SmallCategory
Definitions unfolded in proof :  uall: [x:A]. B[x] uimplies: supposing a sub_ps_context: Y ⊆ X member: t ∈ T psc_map: A ⟶ B nat-trans: nat-trans(C;D;F;G) squash: T small-category: SmallCategory spreadn: spread4 and: P ∧ Q cat-arrow: cat-arrow(C) pi2: snd(t) pi1: fst(t) cat-ob: cat-ob(C) functor-arrow: arrow(F) type-cat: TypeCat cat-comp: cat-comp(C) op-cat: op-cat(C) pscm-id: 1(X) compose: g psc-restriction: f(s) I_set: A(I) subtype_rel: A ⊆B all: x:A. B[x]
Lemmas referenced :  I_set_wf cat-arrow_wf cat-ob_wf sub_ps_context_wf ps_context_wf small-category-cumulativity-2 small-category_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt sqequalHypSubstitution cut applyLambdaEquality setElimination thin rename hypothesis sqequalRule imageMemberEquality hypothesisEquality baseClosed introduction imageElimination productElimination universeIsType extract_by_obid isectElimination applyEquality because_Cache instantiate dependent_functionElimination

Latex:
\mforall{}[C:SmallCategory].  \mforall{}[X,Y:ps\_context\{j:l\}(C)].
    \mforall{}[I,J:cat-ob(C)].  \mforall{}[f:cat-arrow(C)  J  I].  \mforall{}[a:Y(I)].    (f(a)  =  f(a)) 
    supposing  sub\_ps\_context\{j:l\}(C;  Y;  X)



Date html generated: 2020_05_20-PM-01_24_57
Last ObjectModification: 2020_04_01-AM-11_00_45

Theory : presheaf!models!of!type!theory


Home Index