Nuprl Lemma : ps-subset-restriction
∀[C:SmallCategory]. ∀[X,Y:ps_context{j:l}(C)].
  ∀[I,J:cat-ob(C)]. ∀[f:cat-arrow(C) J I]. ∀[a:Y(I)].  (f(a) = f(a) ∈ X(J)) supposing sub_ps_context{j:l}(C; Y; X)
Proof
Definitions occuring in Statement : 
sub_ps_context: Y ⊆ X
, 
psc-restriction: f(s)
, 
I_set: A(I)
, 
ps_context: __⊢
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
apply: f a
, 
equal: s = t ∈ T
, 
cat-arrow: cat-arrow(C)
, 
cat-ob: cat-ob(C)
, 
small-category: SmallCategory
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
uimplies: b supposing a
, 
sub_ps_context: Y ⊆ X
, 
member: t ∈ T
, 
psc_map: A ⟶ B
, 
nat-trans: nat-trans(C;D;F;G)
, 
squash: ↓T
, 
small-category: SmallCategory
, 
spreadn: spread4, 
and: P ∧ Q
, 
cat-arrow: cat-arrow(C)
, 
pi2: snd(t)
, 
pi1: fst(t)
, 
cat-ob: cat-ob(C)
, 
functor-arrow: arrow(F)
, 
type-cat: TypeCat
, 
cat-comp: cat-comp(C)
, 
op-cat: op-cat(C)
, 
pscm-id: 1(X)
, 
compose: f o g
, 
psc-restriction: f(s)
, 
I_set: A(I)
, 
subtype_rel: A ⊆r B
, 
all: ∀x:A. B[x]
Lemmas referenced : 
I_set_wf, 
cat-arrow_wf, 
cat-ob_wf, 
sub_ps_context_wf, 
ps_context_wf, 
small-category-cumulativity-2, 
small-category_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
sqequalHypSubstitution, 
cut, 
applyLambdaEquality, 
setElimination, 
thin, 
rename, 
hypothesis, 
sqequalRule, 
imageMemberEquality, 
hypothesisEquality, 
baseClosed, 
introduction, 
imageElimination, 
productElimination, 
universeIsType, 
extract_by_obid, 
isectElimination, 
applyEquality, 
because_Cache, 
instantiate, 
dependent_functionElimination
Latex:
\mforall{}[C:SmallCategory].  \mforall{}[X,Y:ps\_context\{j:l\}(C)].
    \mforall{}[I,J:cat-ob(C)].  \mforall{}[f:cat-arrow(C)  J  I].  \mforall{}[a:Y(I)].    (f(a)  =  f(a)) 
    supposing  sub\_ps\_context\{j:l\}(C;  Y;  X)
Date html generated:
2020_05_20-PM-01_24_57
Last ObjectModification:
2020_04_01-AM-11_00_45
Theory : presheaf!models!of!type!theory
Home
Index