Step
*
of Lemma
ps-subset-restriction
No Annotations
∀[C:SmallCategory]. ∀[X,Y:ps_context{j:l}(C)].
∀[I,J:cat-ob(C)]. ∀[f:cat-arrow(C) J I]. ∀[a:Y(I)]. (f(a) = f(a) ∈ X(J)) supposing sub_ps_context{j:l}(C; Y; X)
BY
{ (Intros
THEN Unfold `sub_ps_context` 4
THEN (MemTypeHD 4 THENA Auto)
THEN (Assert C ∈ SmallCategory BY
Auto)
THEN DCat 1
THEN All (RepUR ``cat-ob cat-comp op-cat cat-arrow type-cat functor-arrow``)
THEN All (RepUR ``compose pscm-id``)
THEN Fold `psc-restriction` (-6)
THEN Fold `I_set` (-7)
THEN Fold `I_set` (-6)) }
1
1. Cob : Type
2. Carrow : Cob ⟶ Cob ⟶ Type
3. Cid : x:Cob ⟶ (Carrow x x)
4. Ccomp : x:Cob ⟶ y:Cob ⟶ z:Cob ⟶ (Carrow x y) ⟶ (Carrow y z) ⟶ (Carrow x z)
5. ∀x,y:Cob. ∀f:Carrow x y.
(((Ccomp x x y (Cid x) f) = f ∈ (Carrow x y)) ∧ ((Ccomp x y y f (Cid y)) = f ∈ (Carrow x y)))
6. ∀x,y,z,w:Cob. ∀f:Carrow x y. ∀g:Carrow y z. ∀h:Carrow z w.
((Ccomp x z w (Ccomp x y z f g) h) = (Ccomp x y w f (Ccomp y z w g h)) ∈ (Carrow x w))
7. X : ps_context{j:l}(<Cob, Carrow, Cid, Ccomp>)
8. Y : ps_context{j:l}(<Cob, Carrow, Cid, Ccomp>)
9. λA,x. x ∈ A:Cob ⟶ Y(A) ⟶ X(A)
10. ∀A,B:Cob. ∀g:Carrow B A. ((λx.g(x)) = (λx.g(x)) ∈ (Y(A) ⟶ X(B)))
11. I : Cob
12. J : Cob
13. f : Carrow J I
14. a : Y(I)
15. <Cob, Carrow, Cid, Ccomp> ∈ SmallCategory
⊢ f(a) = f(a) ∈ X(J)
Latex:
Latex:
No Annotations
\mforall{}[C:SmallCategory]. \mforall{}[X,Y:ps\_context\{j:l\}(C)].
\mforall{}[I,J:cat-ob(C)]. \mforall{}[f:cat-arrow(C) J I]. \mforall{}[a:Y(I)]. (f(a) = f(a))
supposing sub\_ps\_context\{j:l\}(C; Y; X)
By
Latex:
(Intros
THEN Unfold `sub\_ps\_context` 4
THEN (MemTypeHD 4 THENA Auto)
THEN (Assert C \mmember{} SmallCategory BY
Auto)
THEN DCat 1
THEN All (RepUR ``cat-ob cat-comp op-cat cat-arrow type-cat functor-arrow``)
THEN All (RepUR ``compose pscm-id``)
THEN Fold `psc-restriction` (-6)
THEN Fold `I\_set` (-7)
THEN Fold `I\_set` (-6))
Home
Index