Step
*
1
of Lemma
ps-subset-restriction
1. Cob : Type
2. Carrow : Cob ⟶ Cob ⟶ Type
3. Cid : x:Cob ⟶ (Carrow x x)
4. Ccomp : x:Cob ⟶ y:Cob ⟶ z:Cob ⟶ (Carrow x y) ⟶ (Carrow y z) ⟶ (Carrow x z)
5. ∀x,y:Cob. ∀f:Carrow x y.
(((Ccomp x x y (Cid x) f) = f ∈ (Carrow x y)) ∧ ((Ccomp x y y f (Cid y)) = f ∈ (Carrow x y)))
6. ∀x,y,z,w:Cob. ∀f:Carrow x y. ∀g:Carrow y z. ∀h:Carrow z w.
((Ccomp x z w (Ccomp x y z f g) h) = (Ccomp x y w f (Ccomp y z w g h)) ∈ (Carrow x w))
7. X : ps_context{j:l}(<Cob, Carrow, Cid, Ccomp>)
8. Y : ps_context{j:l}(<Cob, Carrow, Cid, Ccomp>)
9. λA,x. x ∈ A:Cob ⟶ Y(A) ⟶ X(A)
10. ∀A,B:Cob. ∀g:Carrow B A. ((λx.g(x)) = (λx.g(x)) ∈ (Y(A) ⟶ X(B)))
11. I : Cob
12. J : Cob
13. f : Carrow J I
14. a : Y(I)
15. <Cob, Carrow, Cid, Ccomp> ∈ SmallCategory
⊢ f(a) = f(a) ∈ X(J)
BY
{ ((InstHyp [⌜I⌝;⌜J⌝;⌜f⌝] (-6)⋅ THENA Auto)
THEN (ApFunToHypEquands `Z' ⌜Z a⌝ ⌜X(J)⌝ (-1)⋅ THENA Auto)
THEN Reduce -1
THEN Auto) }
Latex:
Latex:
1. Cob : Type
2. Carrow : Cob {}\mrightarrow{} Cob {}\mrightarrow{} Type
3. Cid : x:Cob {}\mrightarrow{} (Carrow x x)
4. Ccomp : x:Cob {}\mrightarrow{} y:Cob {}\mrightarrow{} z:Cob {}\mrightarrow{} (Carrow x y) {}\mrightarrow{} (Carrow y z) {}\mrightarrow{} (Carrow x z)
5. \mforall{}x,y:Cob. \mforall{}f:Carrow x y. (((Ccomp x x y (Cid x) f) = f) \mwedge{} ((Ccomp x y y f (Cid y)) = f))
6. \mforall{}x,y,z,w:Cob. \mforall{}f:Carrow x y. \mforall{}g:Carrow y z. \mforall{}h:Carrow z w.
((Ccomp x z w (Ccomp x y z f g) h) = (Ccomp x y w f (Ccomp y z w g h)))
7. X : ps\_context\{j:l\}(<Cob, Carrow, Cid, Ccomp>)
8. Y : ps\_context\{j:l\}(<Cob, Carrow, Cid, Ccomp>)
9. \mlambda{}A,x. x \mmember{} A:Cob {}\mrightarrow{} Y(A) {}\mrightarrow{} X(A)
10. \mforall{}A,B:Cob. \mforall{}g:Carrow B A. ((\mlambda{}x.g(x)) = (\mlambda{}x.g(x)))
11. I : Cob
12. J : Cob
13. f : Carrow J I
14. a : Y(I)
15. <Cob, Carrow, Cid, Ccomp> \mmember{} SmallCategory
\mvdash{} f(a) = f(a)
By
Latex:
((InstHyp [\mkleeneopen{}I\mkleeneclose{};\mkleeneopen{}J\mkleeneclose{};\mkleeneopen{}f\mkleeneclose{}] (-6)\mcdot{} THENA Auto)
THEN (ApFunToHypEquands `Z' \mkleeneopen{}Z a\mkleeneclose{} \mkleeneopen{}X(J)\mkleeneclose{} (-1)\mcdot{} THENA Auto)
THEN Reduce -1
THEN Auto)
Home
Index