Nuprl Lemma : term-p+1
∀[X,Y,Z,W,t,A:Top]. (((t)p+)[1(𝕀)] ~ ((t)[1(𝕀)])p)
Proof
Definitions occuring in Statement :
interval-1: 1(𝕀)
,
csm+: tau+
,
csm-id-adjoin: [u]
,
cc-fst: p
,
cube-context-adjoin: X.A
,
csm-ap-term: (t)s
,
uall: ∀[x:A]. B[x]
,
top: Top
,
sqequal: s ~ t
Definitions unfolded in proof :
interval-1: 1(𝕀)
,
csm-id-adjoin: [u]
,
csm-ap-term: (t)s
,
cc-fst: p
,
csm+: tau+
,
csm-ap: (s)x
,
csm-id: 1(X)
,
csm-adjoin: (s;u)
,
cc-snd: q
,
csm-ap-type: (AF)s
,
csm-comp: G o F
,
pi2: snd(t)
,
compose: f o g
,
pi1: fst(t)
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
Lemmas referenced :
top_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
sqequalRule,
isect_memberFormation,
introduction,
cut,
sqequalAxiom,
extract_by_obid,
hypothesis,
sqequalHypSubstitution,
isect_memberEquality,
isectElimination,
thin,
hypothesisEquality,
because_Cache
Latex:
\mforall{}[X,Y,Z,W,t,A:Top]. (((t)p+)[1(\mBbbI{})] \msim{} ((t)[1(\mBbbI{})])p)
Date html generated:
2018_05_23-AM-09_29_58
Last ObjectModification:
2018_05_20-PM-06_28_53
Theory : cubical!type!theory
Home
Index