Nuprl Lemma : transform-comp-structure

Gamma,Delta:j⊢. ∀tau:Delta j⟶ Gamma. ∀A:{Gamma ⊢ _}.  (Gamma ⊢ Compositon(A)  Delta ⊢ Compositon((A)tau))


Proof




Definitions occuring in Statement :  composition-structure: Gamma ⊢ Compositon(A) csm-ap-type: (AF)s cubical-type: {X ⊢ _} cube_set_map: A ⟶ B cubical_set: CubicalSet all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T uall: [x:A]. B[x] csm-comp-structure: (cA)tau interval-type: 𝕀 csm-comp: F compose: g
Lemmas referenced :  csm-comp-structure_wf composition-structure_wf cubical-type_wf cube_set_map_wf cubical_set_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt rename introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality sqequalRule hypothesis universeIsType inhabitedIsType instantiate

Latex:
\mforall{}Gamma,Delta:j\mvdash{}.  \mforall{}tau:Delta  j{}\mrightarrow{}  Gamma.  \mforall{}A:\{Gamma  \mvdash{}  \_\}.
    (Gamma  \mvdash{}  Compositon(A)  {}\mRightarrow{}  Delta  \mvdash{}  Compositon((A)tau))



Date html generated: 2020_05_20-PM-05_12_52
Last ObjectModification: 2020_04_19-PM-01_52_58

Theory : cubical!type!theory


Home Index