Nuprl Lemma : typed-cc-snd_wf

G:j⊢. ∀A:{G ⊢ _}.  (tq ∈ {G.A ⊢ _:(A)tp{i:l}})


Proof




Definitions occuring in Statement :  typed-cc-snd: tq typed-cc-fst: tp{i:l} cube-context-adjoin: X.A cubical-term: {X ⊢ _:A} csm-ap-type: (AF)s cubical-type: {X ⊢ _} cubical_set: CubicalSet all: x:A. B[x] member: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T cubical_set: CubicalSet uall: [x:A]. B[x] csm-ap-type: (AF)s pscm-ap-type: (AF)s csm-ap: (s)x pscm-ap: (s)x typed-cc-fst: tp{i:l} typed-psc-fst: tp{i:l} cc-fst: p psc-fst: p cube-context-adjoin: X.A psc-adjoin: X.A I_cube: A(I) I_set: A(I) cubical-type-at: A(a) presheaf-type-at: A(a) cube-set-restriction: f(s) psc-restriction: f(s) cubical-type-ap-morph: (u f) presheaf-type-ap-morph: (u f) typed-cc-snd: tq typed-psc-snd: tq cc-snd: q psc-snd: q
Lemmas referenced :  typed-psc-snd_wf cube-cat_wf cubical-type-sq-presheaf-type cubical-term-sq-presheaf-term
Rules used in proof :  cut introduction extract_by_obid sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity dependent_functionElimination thin hypothesis sqequalRule isectElimination Error :memTop

Latex:
\mforall{}G:j\mvdash{}.  \mforall{}A:\{G  \mvdash{}  \_\}.    (tq  \mmember{}  \{G.A  \mvdash{}  \_:(A)tp\{i:l\}\})



Date html generated: 2020_05_20-PM-01_55_28
Last ObjectModification: 2020_04_03-PM-08_29_54

Theory : cubical!type!theory


Home Index