Nuprl Lemma : typed-psc-snd_wf

C:SmallCategory. ∀G:ps_context{j:l}(C). ∀A:{G ⊢ _}.  (tq ∈ {G.A ⊢ _:(A)tp{i:l}})


Proof




Definitions occuring in Statement :  typed-psc-snd: tq typed-psc-fst: tp{i:l} psc-adjoin: X.A presheaf-term: {X ⊢ _:A} pscm-ap-type: (AF)s presheaf-type: {X ⊢ _} ps_context: __⊢ all: x:A. B[x] member: t ∈ T small-category: SmallCategory
Definitions unfolded in proof :  all: x:A. B[x] typed-psc-fst: tp{i:l} typed-psc-snd: tq uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B
Lemmas referenced :  psc-snd_wf presheaf-type_wf ps_context_wf small-category-cumulativity-2 small-category_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt sqequalRule cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis universeIsType instantiate applyEquality

Latex:
\mforall{}C:SmallCategory.  \mforall{}G:ps\_context\{j:l\}(C).  \mforall{}A:\{G  \mvdash{}  \_\}.    (tq  \mmember{}  \{G.A  \mvdash{}  \_:(A)tp\{i:l\}\})



Date html generated: 2020_05_20-PM-01_27_37
Last ObjectModification: 2020_04_02-PM-00_30_11

Theory : presheaf!models!of!type!theory


Home Index