Step
*
of Lemma
universe-decode-encode
No Annotations
∀[X:j⊢]. ∀[T:{X ⊢ _}]. ∀[cT:X ⊢ CompOp(T)]. (decode(encode(T;cT)) = T ∈ {X ⊢ _})
BY
{ (Intros THEN (BLemma `cubical-type-equal2` THENA Auto) THEN (Assert encode(T;cT) ∈ {X ⊢ _:c𝕌} BY Auto)) }
1
1. X : CubicalSet{j}
2. T : {X ⊢ _}
3. cT : X ⊢ CompOp(T)
4. encode(T;cT) ∈ {X ⊢ _:c𝕌}
⊢ decode(encode(T;cT))
= T
∈ (A:I:fset(ℕ) ⟶ X(I) ⟶ Type × (I:fset(ℕ) ⟶ J:fset(ℕ) ⟶ f:J ⟶ I ⟶ a:X(I) ⟶ (A I a) ⟶ (A J f(a))))
Latex:
Latex:
No Annotations
\mforall{}[X:j\mvdash{}]. \mforall{}[T:\{X \mvdash{} \_\}]. \mforall{}[cT:X \mvdash{} CompOp(T)]. (decode(encode(T;cT)) = T)
By
Latex:
(Intros
THEN (BLemma `cubical-type-equal2` THENA Auto)
THEN (Assert encode(T;cT) \mmember{} \{X \mvdash{} \_:c\mBbbU{}\} BY
Auto))
Home
Index