Nuprl Lemma : universe-decode-encode

[X:j⊢]. ∀[T:{X ⊢ _}]. ∀[cT:X ⊢ CompOp(T)].  (decode(encode(T;cT)) T ∈ {X ⊢ _})


Proof




Definitions occuring in Statement :  universe-decode: decode(t) universe-encode: encode(T;cT) composition-op: Gamma ⊢ CompOp(A) cubical-type: {X ⊢ _} cubical_set: CubicalSet uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a subtype_rel: A ⊆B cubical-type: {X ⊢ _} universe-decode: decode(t) universe-encode: encode(T;cT) cubical-term-at: u(a) cubical-type-at: A(a) pi1: fst(t) csm-ap-type: (AF)s context-map: <rho> csm-ap: (s)x functor-arrow: arrow(F) cube-set-restriction: f(s) universe-type: universe-type(t;I;a) I_cube: A(I) functor-ob: ob(F) formal-cube: formal-cube(I) names-hom: I ⟶ J all: x:A. B[x] squash: T prop: true: True guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q
Lemmas referenced :  cubical-type-equal2 universe-decode_wf universe-encode_wf composition-op_wf cubical_set_cumulativity-i-j cubical-type-cumulativity2 cubical-type_wf cubical_set_wf I_cube_wf fset_wf nat_wf cube-set-restriction-id cubical-type-at_wf formal-cube_wf1 universe-type_wf nh-id_wf names-hom_wf cubical_type_ap_morph_pair_lemma subtype_rel-equal cube-set-restriction_wf equal_wf squash_wf true_wf istype-universe cube-set-restriction-comp subtype_rel_self iff_weakening_equal nh-id-right
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis independent_isectElimination universeIsType instantiate applyEquality sqequalRule setElimination rename productElimination dependent_pairEquality_alt functionExtensionality because_Cache dependent_functionElimination Error :memTop,  lambdaEquality_alt imageElimination equalityTransitivity equalitySymmetry universeEquality natural_numberEquality imageMemberEquality baseClosed independent_functionElimination inhabitedIsType functionIsType

Latex:
\mforall{}[X:j\mvdash{}].  \mforall{}[T:\{X  \mvdash{}  \_\}].  \mforall{}[cT:X  \mvdash{}  CompOp(T)].    (decode(encode(T;cT))  =  T)



Date html generated: 2020_05_20-PM-07_17_17
Last ObjectModification: 2020_04_25-PM-09_42_03

Theory : cubical!type!theory


Home Index