Step
*
1
of Lemma
eu-be-end-eq
1. e : EuclideanPlane@i'
2. a : Point@i
3. b : Point@i
4. c : Point@i
5. a_b_c@i
6. ab=ac@i
⊢ b = c ∈ Point
BY
{ (InstLemma `eu-add-length-between` [⌜e⌝;⌜a⌝;⌜b⌝;⌜c⌝]⋅ THENA Auto)
THEN (InstLemma `eu-congruent-iff-length` [⌜e⌝;⌜a⌝;⌜b⌝;⌜a⌝;⌜c⌝]⋅ THENA Auto) }
1
1. e : EuclideanPlane@i'
2. a : Point@i
3. b : Point@i
4. c : Point@i
5. a_b_c@i
6. ab=ac@i
7. |ac| = |ab| + |bc| ∈ {p:Point| O_X_p} 
8. uiff(ab=ac;|ab| = |ac| ∈ {p:Point| O_X_p} )
⊢ b = c ∈ Point
Latex:
Latex:
1.  e  :  EuclideanPlane@i'
2.  a  :  Point@i
3.  b  :  Point@i
4.  c  :  Point@i
5.  a\_b\_c@i
6.  ab=ac@i
\mvdash{}  b  =  c
By
Latex:
(InstLemma  `eu-add-length-between`  [\mkleeneopen{}e\mkleeneclose{};\mkleeneopen{}a\mkleeneclose{};\mkleeneopen{}b\mkleeneclose{};\mkleeneopen{}c\mkleeneclose{}]\mcdot{}  THENA  Auto)
THEN  (InstLemma  `eu-congruent-iff-length`  [\mkleeneopen{}e\mkleeneclose{};\mkleeneopen{}a\mkleeneclose{};\mkleeneopen{}b\mkleeneclose{};\mkleeneopen{}a\mkleeneclose{};\mkleeneopen{}c\mkleeneclose{}]\mcdot{}  THENA  Auto)
Home
Index