Step
*
1
1
of Lemma
eu-be-end-eq
1. e : EuclideanPlane@i'
2. a : Point@i
3. b : Point@i
4. c : Point@i
5. a_b_c@i
6. ab=ac@i
7. |ac| = |ab| + |bc| ∈ {p:Point| O_X_p} 
8. uiff(ab=ac;|ab| = |ac| ∈ {p:Point| O_X_p} )
⊢ b = c ∈ Point
BY
{ Assert ⌜|ac| = |ac| + |bc| ∈ {p:Point| O_X_p} ⌝⋅
THEN Auto }
1
1. e : EuclideanPlane@i'
2. a : Point@i
3. b : Point@i
4. c : Point@i
5. a_b_c@i
6. ab=ac@i
7. |ac| = |ab| + |bc| ∈ {p:Point| O_X_p} 
8. |ac| = |ac| + |bc| ∈ {p:Point| O_X_p} 
9. |ab| = |ac| ∈ {p:Point| O_X_p} 
10. ab=ac
⊢ b = c ∈ Point
Latex:
Latex:
1.  e  :  EuclideanPlane@i'
2.  a  :  Point@i
3.  b  :  Point@i
4.  c  :  Point@i
5.  a\_b\_c@i
6.  ab=ac@i
7.  |ac|  =  |ab|  +  |bc|
8.  uiff(ab=ac;|ab|  =  |ac|)
\mvdash{}  b  =  c
By
Latex:
Assert  \mkleeneopen{}|ac|  =  |ac|  +  |bc|\mkleeneclose{}\mcdot{}
THEN  Auto
Home
Index