Nuprl Lemma : eu-be-end-eq

e:EuclideanPlane. ∀a,b,c:Point.  (a_b_c  ab=ac  (b c ∈ Point))


Proof




Definitions occuring in Statement :  euclidean-plane: EuclideanPlane eu-between-eq: a_b_c eu-congruent: ab=cd eu-point: Point all: x:A. B[x] implies:  Q equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T prop: uall: [x:A]. B[x] euclidean-plane: EuclideanPlane uimplies: supposing a uiff: uiff(P;Q) and: P ∧ Q squash: T true: True guard: {T} iff: ⇐⇒ Q rev_implies:  Q subtype_rel: A ⊆B
Lemmas referenced :  eu-congruence-identity-sym eu-length-null-segment eu-between-eq-symmetry eu-between-eq-trivial-right eu-add-length-cancel-left eu-add-length-zero iff_weakening_equal eu-mk-seg_wf eu-length_wf true_wf squash_wf eu-add-length_wf eu-X_wf eu-O_wf eu-congruent-iff-length eu-add-length-between euclidean-plane_wf eu-point_wf eu-between-eq_wf eu-congruent_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut hypothesis lemma_by_obid sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality independent_isectElimination because_Cache dependent_functionElimination productElimination equalityEquality setEquality equalityTransitivity equalitySymmetry applyEquality lambdaEquality imageElimination natural_numberEquality sqequalRule imageMemberEquality baseClosed independent_functionElimination dependent_set_memberEquality universeEquality

Latex:
\mforall{}e:EuclideanPlane.  \mforall{}a,b,c:Point.    (a\_b\_c  {}\mRightarrow{}  ab=ac  {}\mRightarrow{}  (b  =  c))



Date html generated: 2016_05_18-AM-06_45_35
Last ObjectModification: 2016_01_16-PM-10_29_28

Theory : euclidean!geometry


Home Index