Nuprl Lemma : eu-add-length-between

[e:EuclideanPlane]. ∀[a,b,c:Point].  |ac| |ab| |bc| ∈ {p:Point| O_X_p}  supposing a_b_c


Proof




Definitions occuring in Statement :  eu-add-length: q eu-length: |s| eu-mk-seg: ab euclidean-plane: EuclideanPlane eu-between-eq: a_b_c eu-X: X eu-O: O eu-point: Point uimplies: supposing a uall: [x:A]. B[x] set: {x:A| B[x]}  equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a eu-length: |s| all: x:A. B[x] euclidean-plane: EuclideanPlane and: P ∧ Q prop: eu-add-length: q top: Top implies:  Q cand: c∧ B not: ¬A false: False stable: Stable{P} uiff: uiff(P;Q)
Lemmas referenced :  eu-extend-property eu-O_wf eu-not-colinear-OXY eu-X_wf not_wf equal_wf eu-point_wf eu-seg1_wf eu-mk-seg_wf eu-seg2_wf eu-between-eq_wf euclidean-plane_wf eu_seg1_mk_seg_lemma eu_seg2_mk_seg_lemma eu-extend_wf eu-between-eq-same2 eu-construction-unicity eu-between-eq-symmetry eu-between-eq-inner-trans eu-between-eq-exchange3 eu-between-eq-exchange4 eu-congruent_wf stable__eu-congruent eu-congruence-identity eu-congruent-iff-length eu-three-segment
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut dependent_set_memberEquality sqequalRule extract_by_obid sqequalHypSubstitution dependent_functionElimination thin because_Cache isectElimination setElimination rename hypothesisEquality hypothesis productElimination isect_memberEquality axiomEquality equalityTransitivity equalitySymmetry voidElimination voidEquality lambdaFormation independent_isectElimination independent_functionElimination productEquality equalityEquality hyp_replacement Error :applyLambdaEquality,  promote_hyp

Latex:
\mforall{}[e:EuclideanPlane].  \mforall{}[a,b,c:Point].    |ac|  =  |ab|  +  |bc|  supposing  a\_b\_c



Date html generated: 2016_10_26-AM-07_42_11
Last ObjectModification: 2016_07_12-AM-08_08_39

Theory : euclidean!geometry


Home Index