Nuprl Lemma : eu-between-eq-exchange4

e:EuclideanPlane. ∀[a,b,c,d:Point].  (a_b_d) supposing (a_c_d and a_b_c)


Proof




Definitions occuring in Statement :  euclidean-plane: EuclideanPlane eu-between-eq: a_b_c eu-point: Point uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x]
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] uimplies: supposing a member: t ∈ T euclidean-plane: EuclideanPlane sq_stable: SqStable(P) implies:  Q stable: Stable{P} not: ¬A and: P ∧ Q prop: false: False squash: T
Lemmas referenced :  sq_stable__eu-between-eq stable__eu-between-eq eu-between-eq-symmetry eu-between-eq-inner-trans eu-between-eq-exchange3 and_wf equal_wf eu-point_wf eu-between-eq_wf not_wf euclidean-plane_wf eu-between-eq-outer-trans
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation isect_memberFormation cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin setElimination rename because_Cache hypothesis isectElimination hypothesisEquality independent_functionElimination independent_isectElimination equalitySymmetry dependent_set_memberEquality independent_pairFormation applyEquality lambdaEquality productElimination setEquality hyp_replacement Error :applyLambdaEquality,  sqequalRule voidElimination imageMemberEquality baseClosed imageElimination comment

Latex:
\mforall{}e:EuclideanPlane.  \mforall{}[a,b,c,d:Point].    (a\_b\_d)  supposing  (a\_c\_d  and  a\_b\_c)



Date html generated: 2016_10_26-AM-07_41_17
Last ObjectModification: 2016_07_12-AM-08_07_30

Theory : euclidean!geometry


Home Index