Nuprl Lemma : eu-between-eq-exchange4
∀e:EuclideanPlane. ∀[a,b,c,d:Point]. (a_b_d) supposing (a_c_d and a_b_c)
Proof
Definitions occuring in Statement :
euclidean-plane: EuclideanPlane
,
eu-between-eq: a_b_c
,
eu-point: Point
,
uimplies: b supposing a
,
uall: ∀[x:A]. B[x]
,
all: ∀x:A. B[x]
Definitions unfolded in proof :
all: ∀x:A. B[x]
,
uall: ∀[x:A]. B[x]
,
uimplies: b supposing a
,
member: t ∈ T
,
euclidean-plane: EuclideanPlane
,
sq_stable: SqStable(P)
,
implies: P
⇒ Q
,
stable: Stable{P}
,
not: ¬A
,
and: P ∧ Q
,
prop: ℙ
,
false: False
,
squash: ↓T
Lemmas referenced :
sq_stable__eu-between-eq,
stable__eu-between-eq,
eu-between-eq-symmetry,
eu-between-eq-inner-trans,
eu-between-eq-exchange3,
and_wf,
equal_wf,
eu-point_wf,
eu-between-eq_wf,
not_wf,
euclidean-plane_wf,
eu-between-eq-outer-trans
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
lambdaFormation,
isect_memberFormation,
cut,
introduction,
extract_by_obid,
sqequalHypSubstitution,
dependent_functionElimination,
thin,
setElimination,
rename,
because_Cache,
hypothesis,
isectElimination,
hypothesisEquality,
independent_functionElimination,
independent_isectElimination,
equalitySymmetry,
dependent_set_memberEquality,
independent_pairFormation,
applyEquality,
lambdaEquality,
productElimination,
setEquality,
hyp_replacement,
Error :applyLambdaEquality,
sqequalRule,
voidElimination,
imageMemberEquality,
baseClosed,
imageElimination,
comment
Latex:
\mforall{}e:EuclideanPlane. \mforall{}[a,b,c,d:Point]. (a\_b\_d) supposing (a\_c\_d and a\_b\_c)
Date html generated:
2016_10_26-AM-07_41_17
Last ObjectModification:
2016_07_12-AM-08_07_30
Theory : euclidean!geometry
Home
Index