Nuprl Lemma : eu-between-eq-exchange3
∀e:EuclideanPlane. ∀[a,b,c,d:Point].  (b_c_d) supposing (a_c_d and a_b_c)
Proof
Definitions occuring in Statement : 
euclidean-plane: EuclideanPlane
, 
eu-between-eq: a_b_c
, 
eu-point: Point
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
prop: ℙ
, 
euclidean-plane: EuclideanPlane
Lemmas referenced : 
eu-between-eq-symmetry, 
eu-between-eq-inner-trans, 
eu-between-eq_wf, 
eu-point_wf, 
euclidean-plane_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
isect_memberFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
isectElimination, 
independent_isectElimination, 
hypothesis, 
because_Cache, 
setElimination, 
rename
Latex:
\mforall{}e:EuclideanPlane.  \mforall{}[a,b,c,d:Point].    (b\_c\_d)  supposing  (a\_c\_d  and  a\_b\_c)
Date html generated:
2016_05_18-AM-06_34_40
Last ObjectModification:
2015_12_28-AM-09_27_24
Theory : euclidean!geometry
Home
Index