Nuprl Lemma : eu-between-eq-exchange3

e:EuclideanPlane. ∀[a,b,c,d:Point].  (b_c_d) supposing (a_c_d and a_b_c)


Proof




Definitions occuring in Statement :  euclidean-plane: EuclideanPlane eu-between-eq: a_b_c eu-point: Point uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x]
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] uimplies: supposing a member: t ∈ T prop: euclidean-plane: EuclideanPlane
Lemmas referenced :  eu-between-eq-symmetry eu-between-eq-inner-trans eu-between-eq_wf eu-point_wf euclidean-plane_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation isect_memberFormation cut lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality isectElimination independent_isectElimination hypothesis because_Cache setElimination rename

Latex:
\mforall{}e:EuclideanPlane.  \mforall{}[a,b,c,d:Point].    (b\_c\_d)  supposing  (a\_c\_d  and  a\_b\_c)



Date html generated: 2016_05_18-AM-06_34_40
Last ObjectModification: 2015_12_28-AM-09_27_24

Theory : euclidean!geometry


Home Index