Nuprl Lemma : eu-between-eq-outer-trans
∀e:EuclideanPlane. ∀[a,b,c,d:Point].  (a_c_d) supposing (b_c_d and a_b_c and (¬(b = c ∈ Point)))
Proof
Definitions occuring in Statement : 
euclidean-plane: EuclideanPlane
, 
eu-between-eq: a_b_c
, 
eu-point: Point
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
not: ¬A
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
euclidean-plane: EuclideanPlane
, 
sq_stable: SqStable(P)
, 
prop: ℙ
, 
exists: ∃x:A. B[x]
, 
and: P ∧ Q
, 
squash: ↓T
Lemmas referenced : 
eu-point_wf, 
sq_stable__eu-between-eq, 
eu-between-eq_wf, 
eu-between-eq-same, 
equal_wf, 
eu-extend-exists, 
not_wf, 
euclidean-plane_wf, 
eu-construction-unicity, 
eu-between-eq-symmetry, 
eu-between-eq-inner-trans, 
eu-between-eq-exchange3, 
eu-congruent-symmetry
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
isect_memberFormation, 
cut, 
introduction, 
sqequalRule, 
sqequalHypSubstitution, 
lambdaEquality, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
voidElimination, 
equalityEquality, 
extract_by_obid, 
isectElimination, 
setElimination, 
rename, 
hypothesis, 
because_Cache, 
independent_functionElimination, 
equalitySymmetry, 
hyp_replacement, 
Error :applyLambdaEquality, 
independent_isectElimination, 
dependent_set_memberEquality, 
productElimination, 
imageMemberEquality, 
baseClosed, 
imageElimination
Latex:
\mforall{}e:EuclideanPlane.  \mforall{}[a,b,c,d:Point].    (a\_c\_d)  supposing  (b\_c\_d  and  a\_b\_c  and  (\mneg{}(b  =  c)))
Date html generated:
2016_10_26-AM-07_41_13
Last ObjectModification:
2016_07_12-AM-08_07_23
Theory : euclidean!geometry
Home
Index