Nuprl Lemma : eu-construction-unicity
∀e:EuclideanPlane. ∀[Q,A,X,Y:Point].  (X = Y ∈ Point) supposing (AY=AX and Q_A_X and Q_A_Y and (¬(Q = A ∈ Point)))
Proof
Definitions occuring in Statement : 
euclidean-plane: EuclideanPlane
, 
eu-between-eq: a_b_c
, 
eu-congruent: ab=cd
, 
eu-point: Point
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
not: ¬A
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
prop: ℙ
, 
euclidean-plane: EuclideanPlane
Lemmas referenced : 
eu-congruent_wf, 
eu-between-eq_wf, 
not_wf, 
equal_wf, 
eu-point_wf, 
euclidean-plane_wf, 
eu-congruent-refl, 
eu-five-segment, 
eu-congruence-identity, 
eu-congruent-symmetry, 
eu-three-segment
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
isect_memberFormation, 
introduction, 
cut, 
hypothesis, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setElimination, 
rename, 
hypothesisEquality, 
sqequalRule, 
isect_memberEquality, 
axiomEquality, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination, 
independent_isectElimination
Latex:
\mforall{}e:EuclideanPlane.  \mforall{}[Q,A,X,Y:Point].    (X  =  Y)  supposing  (AY=AX  and  Q\_A\_X  and  Q\_A\_Y  and  (\mneg{}(Q  =  A)))
Date html generated:
2016_05_18-AM-06_35_23
Last ObjectModification:
2015_12_28-AM-09_26_46
Theory : euclidean!geometry
Home
Index